182 resultados para Machine components
Resumo:
This paper investigates the construction of linear-in-the-parameters (LITP) models for multi-output regression problems. Most existing stepwise forward algorithms choose the regressor terms one by one, each time maximizing the model error reduction ratio. The drawback is that such procedures cannot guarantee a sparse model, especially under highly noisy learning conditions. The main objective of this paper is to improve the sparsity and generalization capability of a model for multi-output regression problems, while reducing the computational complexity. This is achieved by proposing a novel multi-output two-stage locally regularized model construction (MTLRMC) method using the extreme learning machine (ELM). In this new algorithm, the nonlinear parameters in each term, such as the width of the Gaussian function and the power of a polynomial term, are firstly determined by the ELM. An initial multi-output LITP model is then generated according to the termination criteria in the first stage. The significance of each selected regressor is checked and the insignificant ones are replaced at the second stage. The proposed method can produce an optimized compact model by using the regularized parameters. Further, to reduce the computational complexity, a proper regression context is used to allow fast implementation of the proposed method. Simulation results confirm the effectiveness of the proposed technique. © 2013 Elsevier B.V.
Resumo:
This paper presents an integrated design and costing method for large stiffened panels for the purpose of investigating the influence and interaction of lay-up technology and production rate on manufacturing cost. A series of wing cover panels (≈586kg, 19·9m2) have been sized with realistic requirements considering manual and automated lay-up routes. The integrated method has enabled the quantification of component unit cost sensitivity to changes in annual production rate and employed equipment maximum deposition rate. Moreover the results demonstrate the interconnected relationship between lay-up process and panel design, and unit cost. The optimum unit cost solution when using automated lay-up is a combination of the minimum deposition rate and minimum number of lay-up machines to meet the required production rate. However, the location of the optimum unit cost, at the boundaries between the number of lay-up machines required, can make unit cost very sensitive to small changes in component design, production rate, and equipment maximum deposition rate. - See more at: http://aerosociety.com/News/Publications/Aero-Journal/Online/1941/Modelling-layup-automation-and-production-rate-interaction-on-the-cost-of-large-stiffened-panel-components#sthash.0fLuu9iG.dpuf
Resumo:
Mobile malware has continued to grow at an alarming rate despite on-going mitigation efforts. This has been much more prevalent on Android due to being an open platform that is rapidly overtaking other competing platforms in the mobile smart devices market. Recently, a new generation of Android malware families has emerged with advanced evasion capabilities which make them much more difficult to detect using conventional methods. This paper proposes and investigates a parallel machine learning based classification approach for early detection of Android malware. Using real malware samples and benign applications, a composite classification model is developed from parallel combination of heterogeneous classifiers. The empirical evaluation of the model under different combination schemes demonstrates its efficacy and potential to improve detection accuracy. More importantly, by utilizing several classifiers with diverse characteristics, their strengths can be harnessed not only for enhanced Android malware detection but also quicker white box analysis by means of the more interpretable constituent classifiers.
Resumo:
In this paper a multiple classifier machine learning methodology for Predictive Maintenance (PdM) is presented. PdM is a prominent strategy for dealing with maintenance issues given the increasing need to minimize downtime and associated costs. One of the challenges with PdM is generating so called ’health factors’ or quantitative indicators of the status of a system associated with a given maintenance issue, and determining their relationship to operating costs and failure risk. The proposed PdM methodology allows dynamical decision rules to be adopted for maintenance management and can be used with high-dimensional and censored data problems. This is achieved by training multiple classification modules with different prediction horizons to provide different performance trade-offs in terms of frequency of unexpected breaks and unexploited lifetime and then employing this information in an operating cost based maintenance decision system to minimise expected costs. The effectiveness of the methodology is demonstrated using a simulated example and a benchmark semiconductor manufacturing maintenance problem.
Resumo:
A rapid design methodology for orthonormal wavelet transform cores has been developed. This methodology is based on a generic, scaleable architecture utilising time-interleaved coefficients for the wavelet transform filters. The architecture has been captured in VHDL and parameterised in terms of wavelet family, wavelet type, data word length and coefficient word length. The control circuit is embedded within the cores and allows them to be cascaded without any interface glue logic for any desired level of decomposition. Case studies for stand alone and cascaded silicon cores for single and multi-stage wavelet analysis respectively are reported. The design time to produce silicon layout of a wavelet based system has been reduced to typically less than a day. The cores are comparable in area and performance to handcrafted designs. The designs are portable across a range of foundries and are also applicable to FPGA and PLD implementations.