216 resultados para Ischaemia biomarker


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to investigate the responses of phase I and II biotransformation enzymes and levels of PAHs in the Mediterranean mussel (Mytilus galloprovincialis, Lamarck, 1819) collected from three sites at different distance from an oil refinery. Phase I enzyme activities as NAD(P)H-cyt c red, NADH ferry red, B(a)PMO and phase II as UDPGT. GST were measured in digestive gland while 16 PAHs (US-EPA) in whole soft tissue. An added value to the data obtained in the present study rely on the RDA analysis which showed close correlations between PAHs levels and phase I enzyme activities in mussels collected in front of the refinery. And again a significant spatial correlation between B(a)P levels and NADPH-cyt c red activities was observed using linear models. No differences among sites for B(a) PMO and phase II GST activities were observed, while the application of UDPGT as biomarkers requires further investigation. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polybrominated diphenyl ethers (PBDEs) and cytochrome P450 enzyme activities were investigated in European eels (Anguilla anguilla) collected from seven sites in a coastal lagoon in the north-western Mediterranean Sea, Orbetello lagoon (Italy). Twelve PBDE congeners were measured in muscle and two CYP1A enzyme activities, 7-ethoxyresorufin-O-deethylase (EROD) and benzo(a)pyrene monooxygenase (BP (a)PMO), were investigated in liver microsomal fraction in order to obtain insights into the health of the lagoon environment. PBDE muscle levels were low and the most abundant congeners were 2,2',4,4'-tetrabronnodiphenylether (BDE-47), 2,2',4,4',5,5'-hexaBDE (BDE-153) and 2,2',4,5'-tetraBDE (BDE-49). EROD and B(a)PMO activities were also low and no differences were observed between eels from different sites. Multivariate analysis (PCA) did not indicate correlations between PBDEs and either P450 activities. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A proof-of-concept study was reported on analysis of antigen–antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles in an imaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, individual Au nanoparticles (30 nm) were observed with high signal-to-noise ratio and they were effectively utilized to monitor changes in refractive index induced by specific binding of the adsorbates. Using PSA antigen as a model, a LSPR ?max shift of about 2.85 nm was recorded for a molecular binding corresponding to 0.1 pg ml-1 of the protein biomarker. This result successfully demonstrates a non-labeling detection system for proteins as well as thousands of different chemical or biological species, and it possesses a great potential as a sensitive, on-chip and multiplexing detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein, we present the use of a single gold nanorod sensor for detection of diseases on an antibody-functionalized surface, based on antibody–antigen interaction and the localized surface plasmon resonance (LSPR) ?max shifts of the resonant Rayleigh light scattering spectra. By replacing the cetyltrimethylammonium bromide (CTAB), a tightly packed self-assembled monolayer of HS(CH2)11(OCH2CH2)6OCH2COOH(OEG6) has been successfully formed on the gold nanorod surface prior to the LSPR sensing, leading to the successful fabrication of individual gold nanorod immunosensors. Using prostate specific antigen (PSA) as a protein biomarker, the lowest concentration experimentally detected was as low as 111 aM, corresponding to a 2.79 nm LSPR ?max shift. These results indicate that the detection platform is very sensitive and outperforms detection limits of commercial tests for PSA so far. Correlatively, its detection limit can be equally compared to the assays based on DNA biobarcodes. This study shows that a gold nanorod has been used as a single nanobiosensor to detect antigens for the first time; and the detection method based on the resonant Rayleigh scattering spectrum of individual gold nanorods enables a simple, label-free detection with ultrahigh sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue microarrays (TMAs) represent a powerful method for undertaking large-scale tissue-based biomarker studies. While TMAs offer several advantages, there are a number of issues specific to their use which need to be considered when employing this method. Given the investment in TMA-based research, guidance on design and execution of experiments will be of benefit and should help researchers new to TMA-based studies to avoid known pitfalls. Furthermore, a consensus on quality standards for TMA-based experiments should improve the robustness and reproducibility of studies, thereby increasing the likelihood of identifying clinically useful biomarkers. In order to address these issues, the National Cancer Research Institute Biomarker and Imaging Clinical Studies Group organized a 1-day TMA workshop held in Nottingham in May 2012. The document herein summarizes the conclusions from the workshop. It includes guidance and considerations on all aspects of TMA-based research, including the pre-analytical stages of experimental design, the analytical stages of data acquisition, and the postanalytical stages of data analysis. A checklist is presented which can be used both for planning a TMA experiment and interpreting the results of such an experiment. For studies of cancer biomarkers, this checklist could be used as a supplement to the REMARK guidelines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis of clinical breast samples using biomarkers is integral to current breast cancer management. Currently, a limited number of targeted therapies are standard of care in breast cancer treatment. However, these targeted therapies are only suitable for a subset of patients and resistance may occur. Strategies to prevent the occurrence of invasive lesions are required to reduce the morbidity and mortality associated with the development of cancer. In theory, application of targeted therapies to pre-invasive lesions will prevent their progression to invasive lesions with full malignant potential. The diagnostic challenge for pathologists is to make interpretative decisions on early detected pre-invasive lesions. Overall, only a small proportion of these pre-invasive lesions will progress to invasive carcinoma and morphological assessment is an imprecise and subjective means to differentiate histologically identical lesions with varying malignant potential. Therefore differential biomarker analysis in pre-invasive lesions may prevent overtreatment with surgery and provide a predictive indicator of response to therapy. There follows a review of established and emerging potential druggable targets in pre-invasive lesions and correlation with lesion morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunohistochemistry (IHC) plays a central role in the histopathological classification of diseases, including cancer. More recently, the importance of immunohistochemical staining is increasing. IHC usage in diagnostics is invaluable; however, the genetic and therapeutic significance of biomarker immunostaining has become equally relevant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomarkers are conventionally defined as "biological molecules that represent health and disease states." They typically are measured in readily available body fluids (blood or urine), lie outside the causal pathway, are able to detect subclinical disease, and are used to monitor clinical and subclinical disease burden and response to treatments. Biomarkers can be "direct" endpoints of the disease itself, or "indirect" or surrogate endpoints. New technologies (such as metabolomics, proteomics, genomics) bring a wealth of opportunity to develop new biomarkers. Other new technologies enable the development of nonmolecular, functional, or biophysical tissue-based biomarkers. Diabetes mellitus is a complex disease affecting almost every tissue and organ system, with metabolic ramifications extending far beyond impaired glucose metabolism. Biomarkers may reflect the presence and severity of hyperglycemia (ie, diabetes itself) or the presence and severity of the vascular complications of diabetes. Illustrative examples are considered in this brief review. In blood, hemoglobin A1c (HbA1c) may be considered as a biomarker for the presence and severity of hyperglycemia, implying diabetes or prediabetes, or, over time, as a "biomarker for a risk factor," ie, hyperglycemia as a risk factor for diabetic retinopathy, nephropathy, and other vascular complications of diabetes. In tissues, glycation and oxidative stress resulting from hyperglycemia and dyslipidemia lead to widespread modification of biomolecules by advanced glycation end products (AGEs). Some of these altered species may serve as biomarkers, whereas others may lie in the causal pathway for vascular damage. New noninvasive technologies can detect tissue damage mediated by AGE formation: these include indirect measures such as pulse wave analysis (a marker of vascular dysfunction) and more direct markers such as skin autofluorescence (a marker of long-term accumulation of AGEs). In the future, we can be optimistic that new blood and tissue-based biomarkers will enable the detection, prevention, and treatment of diabetes and its complications long before overt disease develops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of molecular interaction and conformational dynamics of biomolecules is of paramount importance in understanding of their vital functions in complex biological systems, disease detection, and new drug development. Plasmonic biosensors based upon surface plasmon resonance and localized surface plasmon resonance have become the predominant workhorse for detecting accumulated biomass caused by molecular binding events. However, unlike surface-enhanced Raman spectroscopy (SERS), the plasmonic biosensors indeed are not suitable tools to interrogate vibrational signatures of conformational transitions required for biomolecules to interact. Here, we show that plasmonic metamaterials can offer two transducing channels for parallel acquisition of optical transmission and sensitive SERS spectra at the biointerface, simultaneously probing the conformational states and binding affinity of biomolecules, e.g. G-quadruplexes, in different environments (Fig. 1). We further demonstrate the use of the metamaterials for fingerprinting and detection of arginine-glycine-glycine domain of nucleolin, a cancer biomarker which specifically binds to a G-quadruplex, with the picomolar sensitivity. The dual-mode nanosensor will significantly contribute to unraveling the complexes of the conformational dynamics of biomolecules as well as to improving specificity of biodetection assays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By enabling subwavelength light localization and strong electromagnetic field enhancement, plasmonic biosensors have opened up a new realm of possibilities for a broad range of chemical and biological sensing applications owing to their label-free and real-time attributes. Although significant progress has been made, many fundamental and practical challenges still remain to be addressed. For instance, the plasmonic biosensors are nonselective sensing platforms; they are not well-suited to provide information regarding conformation or chemical fingerprint of unknown biomolecules. Furthermore, tunability of the plasmonic resonance in visible frequency regime is still limited; this will prevent their efficient and reproducible exploitation in single-molecule sensitivity. Here, we show that by engineering geometry of plasmonic metamaterials,1 consisting of periodic arrays of artificial split-ring resonators (SRRs), the plasmonic resonance of metamaterials could be tuned to visible-near infrared regimes (Vis-NIR) such that it allows parallel acquisition of optical transmission and highly surface-enhanced Raman (SERS) spectra from large functionalized SRR arrays. The Au SRRs were designed in form of alphabet letters (U, V, S, H, Y) with various line width (from 80 to 30 nm). By tailoring their size and shape, plasmonic resonance wavelength of the SRRs could be actively tuned so that it gives the strongest SERS effect under given excitation energy and polarization for biological and organic molecules. On the other hand, the plasmonic tunability was also achieved for a given SRR pattern by tuning the laser wavelength to obtain the highest electromagnetic field enhancement. The geometry- and laser-tunable channels typically provide an electromagnetic field enhancement as high as 20 times. This will provide the basis of versatile and multichannel devices for identification of different conformational states of Guanine-rich DNA, detection of a cancer biomarker nucleolin, and femtomolar sensitivity detection of food and drink additives. These results show that the tunable Vis-IR metamaterials are very versatile biosensing platforms and suggest considerable promise in genomic research, disease diagnosis, and food safety analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes.
It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage
and childhood diseases. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major
track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body
of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the
strengths, weaknesses and clinical applicability of current sperm DNA tests. Next, the biological significance of DNA damage in
the male germ line is considered. Finally, as sperm DNA damage is often the result of oxidative stress in the male reproductive tract,
the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. DNA damage in human spermatozoa is an important attribute of semen quality. It should be part of the clinical work up and properly controlled trials
addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of molecular interaction and conformational dynamics of biomolecules is of paramount importance in understanding of their vital functions in complex biological systems, disease detection, and new drug development. Plasmonic biosensors based upon surface plasmon resonance and localized surface plasmon resonance have become the predominant workhorse for detecting accumulated biomass caused by molecular binding events. However, unlike surface-enhanced Raman spectroscopy (SERS), the plasmonic biosensors indeed are not suitable tools to interrogate vibrational signatures of conformational transitions required for biomolecules to interact. Here, we show that highly tunable plasmonic metamaterials can offer two transducing channels for parallel acquisition of optical transmission and sensitive SERS spectra at the biointerface, simultaneously probing the conformational states and binding affinity of biomolecules, e.g. G-quadruplexes, in different environments. We further demonstrate the use of the metamaterials for fingerprinting and detection of arginine-glycine-glycine domain of nucleolin, a cancer biomarker which specifically binds to a G-quadruplex, with the picomolar sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metastasis-associated phosphatase of regenerating liver-3 (PRL-3) has pleiotropic effects in driving cancer progression, yet the signaling mechanisms of PRL-3 are still not fully understood. Here, we provide evidence for PRL-3-induced hyperactivation of EGFR and its downstream signaling cascades in multiple human cancer cell lines. Mechanistically, PRL-3-induced activation of EGFR was attributed primarily to transcriptional downregulation of protein tyrosine phosphatase 1B (PTP1B), an inhibitory phosphatase for EGFR. Functionally, PRL-3-induced hyperactivation of EGFR correlated with increased cell growth, promigratory characteristics, and tumorigenicity. Moreover, PRL-3 induced cellular addiction to EGFR signaling, as evidenced by the pronounced reversion of these oncogenic attributes upon EGFR-specific inhibition. Of clinical significance, we verified elevated PRL-3 expression as a predictive marker for favorable therapeutic response in a heterogeneous colorectal cancer (CRC) patient cohort treated with the clinically approved anti-EGFR antibody cetuximab. The identification of PRL-3-driven EGFR hyperactivation and consequential addiction to EGFR signaling opens new avenues for inhibiting PRL-3-driven cancer progression. We propose that elevated PRL-3 expression is an important clinical predictive biomarker for favorable anti-EGFR cancer therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clinical, pathological and experimental studies of radiation retinopathy confirm that the primary vascular event is endothelial cell loss and capillary closure. Pericytes are less susceptible, but typically atrophy as the capillaries become non-functional. The immediate effects of radiation reflect interphase and early mitotic death of injured endothelial cells, whereas later changes may be attributed to delayed mitotic death of compromised endothelial cells as they attempt division in the ordinary course of repair and replacement. Capillary occlusion leads to the formation of dilated capillary collaterals which may remain serviceable and competent for years. Microaneurysms develop in acellular and poorly supported capillaries, predominantly on the arterial side of the circulation and adjacent to regions of poorly perfused retina. Alterations in haemodynamics produce large telangiectatic-like channels which, typically develop a thick collagenous adventitia and may become fenestrated. Limited capillary regeneration occurs, usually evident as recanalisation of arterioles or venules by new capillaries. Vitreo-retinal neovascularisation may occur where retinal ischaemia is widespread. Radiation produces an exaggerated vasculopathy in patients with diabetes mellitus, and five month streptozotocin-induced diabetic rats develop a severe ischaemic retinopathy with vitreoretinal neovascularisation when exposed to 1500 cGy of radiation. Later photocoagulation is useful in containing or reversing microvascular incompetence and vasoproliferation in some patients with advanced radiation retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental model of quinine induced blindness is presented. Electrophysiological, angiographical and morphological examinations were made. The occurrence of blindness and any recovery from blindness was dependent upon the dose of quinine taken. As no evidence of acute retinal ischaemia was found it is concluded that quinine is retinotoxic.