99 resultados para pediatric acute lymphoblastic leukemia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wilms' tumor gene 1 (WT1) is overexpressed in the majority (70-90%) of acute leukemias and has been identified as an independent adverse prognostic factor, a convenient minimal residual disease (MRD) marker and potential therapeutic target in acute leukemia. We examined WT1 expression patterns in childhood acute lymphoblastic leukemia (ALL), where its clinical implication remains unclear. Using a real-time quantitative PCR designed according to Europe Against Cancer Program recommendations, we evaluated WT1 expression in 125 consecutively enrolled patients with childhood ALL (106 BCP-ALL, 19 T-ALL) and compared it with physiologic WT1 expression in normal and regenerating bone marrow (BM). In childhood B-cell precursor (BCP)-ALL, we detected a wide range of WT1 levels (5 logs) with a median WT1 expression close to that of normal BM. WT1 expression in childhood T-ALL was significantly higher than in BCP-ALL (P<0.001). Patients with MLL-AF4 translocation showed high WT1 overexpression (P<0.01) compared to patients with other or no chromosomal aberrations. Older children (> or =10 years) expressed higher WT1 levels than children under 10 years of age (P<0.001), while there was no difference in WT1 expression in patients with peripheral blood leukocyte count (WBC) > or =50 x 10(9)/l and lower. Analysis of relapsed cases (14/125) indicated that an abnormal increase or decrease in WT1 expression was associated with a significantly increased risk of relapse (P=0.0006), and this prognostic impact of WT1 was independent of other main risk factors (P=0.0012). In summary, our study suggests that WT1 expression in childhood ALL is very variable and much lower than in AML or adult ALL. WT1, thus, will not be a useful marker for MRD detection in childhood ALL, however, it does represent a potential independent risk factor in childhood ALL. Interestingly, a proportion of childhood ALL patients express WT1 at levels below the normal physiological BM WT1 expression, and this reduced WT1 expression appears to be associated with a higher risk of relapse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoietic chimerism was analyzed in serial bone marrow samples taken from 28 children following T-cell depleted unrelated donor bone marrow transplants (UD BMT) for acute lymphoblastic leukemia (ALL). Chimeric status was determined by polymerase chain reaction (PCR) of simple tandem repeat (STR) sequences (maximal sensitivity, 0.1%). At least two serial samples were examined in 23 patients. Of these, two had evidence of complete donor engraftment at all times and eight showed stable low level mixed chimerism (MC) (<1% recipient hematopoiesis). All 10 of these patients remain in remission with a minimum follow-up of 24 months. By contrast, 13 patients demonstrated a progressive return of recipient hematopoiesis. Five of these relapsed (4 to 9 months post BMT), one died of cytomegalovirus pneumonitis and seven remain in remission with a minimum follow-up of 24 months. Five children were excluded from serial analysis as two serial samples were not collected before either relapse (3) or graft rejection (2). We conclude that as with sibling transplants, ex vivo T depleted UD BMT in children with ALL is associated with a high incidence of MC. Stable donor engraftment and low level MC always correlated with continued remission. However, detection of a progressive return of recipient cells did not universally correlate with relapse, but highlighted those patients at greatest risk. Serial chimerism analysis by PCR of STRs provides a rapid and simple screening technique for the detection of relapse and the identification of patients with progressive MC who might benefit from detailed molecular analysis for minimal residual disease following matched volunteer UD BMT for childhood ALL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Children with Down syndrome (DS) have a greatly increased risk of acute megakaryoblastic leukemia (AMKL) and acute lymphoblastic leukemia (ALL). Both DS-AMKL and the related transient myeloproliferative disorder (TMD) have GATA1 mutations as obligatory, early events. To identify mutations contributing to leukemogenesis in DS-ALL, we undertook sequencing of candidate genes, including FLT3, RAS, PTPN11, BRAF, and JAK2. Sequencing of the JAK2 pseudokinase domain identified a specific, acquired mutation, JAK2R683, in 12 (28%) of 42 DS-ALL cases. Functional studies of the common JAK2R683G mutation in murine Ba/F3 cells showed growth factor independence and constitutive activation of the JAK/STAT signaling pathway. High-resolution SNP array analysis of 9 DS-ALL cases identified additional submicroscopic deletions in key genes, including ETV6, CDKN2A, and PAX5. These results infer a complex molecular pathogenesis for DS-ALL leukemogenesis, with trisomy 21 as an initiating or first hit and with chromosome aneuploidy, gene deletions, and activating JAK2 mutations as complementary genetic events. (Blood. 2009; 113: 646-648)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DEK is important in regulating cellular processes including proliferation, differentiation and maintenance of stem cell phenotype. The translocation t(6;9) in Acute Myeloid Leukemia (AML), which fuses DEK with NUP214, confers a poor prognosis and a higher risk of relapse. The over-expression of DEK in AML has been reported, but different studies have shown diminished levels in pediatric and promyelocytic leukemias. This study has characterized DEK expression, in silico, using a large multi-center cohort of leukemic and normal control cases. Overall, DEK was under-expressed in AML compared to normal bone marrow (NBM). Studying specific subtypes of AML confirmed either no significant change or a significant reduction in DEK expression compared to NBM. Importantly, the similarity of DEK expression between AML and NBM was confirmed using immunohistochemistry analysis of tissue mircorarrays. In addition, stratification of AML patients based on median DEK expression levels indicated that DEK showed no effect on the overall survival of patients. DEK expression during normal hematopoiesis did reveal a relationship with specific cell types implicating a distinct function during myeloid differentiation. Whilst DEK may play a potential role in hematopoiesis, it remains to be established whether it is important for leukemagenesis, except when involved in the t(6;9) translocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although recent decades have seen an improved cure rate for newly diagnosed paediatric acute lymphoplastic leukaemia (ALL), the treatment options for adult ALL, T-cell ALL (T-ALL) and relapsed disease remain poor. We have developed a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds and established their anticancer efficacy in a variety of human tumour cell types. Here, we demonstrate that PBOX-15 inhibits cell growth, and induces G2/M cell cycle arrest and apoptosis in both T-ALL and B-cell ALL (B-ALL) cells. In addition, prior to PBOX-15-induced apoptosis, PBOX-15 decreases ALL cell adhesion, spreading and migration. Concurrently, PBOX-15 differentially down-regulates β1-, β2- and α4-integrin expression in ALL cells and significantly decreases integrin-mediated cell attachment. PBOX-15 interferes with the lateral mobility and clustering of integrins in both B-ALL and T-ALL cells. These data suggest that PBOX-15 is not only effective in inducing apoptosis in ALL cells, but also has the potential to disrupt integrin-mediated adhesion of malignant lymphocytes, which represents a novel avenue for regulating leukaemic cell homing and migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this single centre study of childhood acute lymphoblastic leukaemia (ALL) patients treated on the Medical Research Council UKALL 97/99 protocols, it was determined that minimal residual disease (MRD) detected by real time quantitative polymerase chain reaction (RQ-PCR) and 3-colour flow cytometry (FC) displayed high levels of qualitative concordance when evaluated at multiple time-points during treatment (93.38%), and a combined use of both approaches allowed a multi time-point evaluation of MRD kinetics for 90% (53/59) of the initial cohort. At diagnosis, MRD markers with sensitivity of at least 0.01% were identified by RQ-PCR detection of fusion gene transcripts, IGH/TRG rearrangements, and FC. Using a combined RQ-PCR and FC approach, the evaluation of 367 follow-up BM samples revealed that the detection of MRD >1% at Day 15 (P = 0.04), >0.01% at the end of induction (P = 0.02), >0.01% at the end of consolidation (P = 0.01), >0.01% prior to the first delayed intensification (P = 0.01), and >0.1% prior to the second delayed intensification and continued maintenance (P = 0.001) were all associated with relapse and, based on early time-points (end of induction and consolidation) a significant log-rank trend (P = 0.0091) was noted between survival curves for patients stratified into high, intermediate and low-risk MRD groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a series of Spanish patients with acute lymphoblastic leukaemia in whom the t(12;21) [TEL/AML1] translocation could not be identified with two sensitive techniques: reverse transcript-polymerase chain reaction (RT-PCR) and fluorescence in-situ hybridization (FISH). 101 cases were analysed: 38 children (29 B-cell precursor; nine T-cell precursor) and 63 adults (48 B-cell precursor; 15 T-cell precursor). Specific RT-PCR to amplify the TEL/AML1 fusion transcript was negative in all 101 cases. Moreover, all 38 paediatric samples were also negative by interphase FISH analysis for the presence of the TEL/AML1 fusion. These results suggest the existence of geographic/race variations in the genotype of acute lymphoblastic leukaemia (ALL).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND:
Aurora kinases play an essential role in the orchestration of chromosome separation and cytokinesis during mitosis. Small-molecule inhibition of the aurora kinases has been shown to result in inhibition of cell division, phosphorylation of histone H3 and the induction of apoptosis in a number of cell systems. These characteristics have led aurora kinase inhibitors to be considered as potential therapeutic agents.
DESIGN AND METHODS:
Aurora kinase gene expression profiles were assessed in 101 samples from patients with acute myeloid leukemia. Subsequently, aurora kinase inhibitors were investigated for their in vitro effects on cell viability, histone H3 phosphorylation, cell cycle and morphology in acute myeloid leukemia cell lines and primary acute myeloid leukemia samples.
RESULTS:
The aurora kinase inhibitors AZD1152-HQPA and ZM447439 induced growth arrest and the accumulation of hyperploid cells in acute myeloid leukemia cell lines and primary acute myeloid leukemia cultures. Furthermore, both agents inhibited histone H3 phosphorylation and this preceded perturbations in cell cycle and the induction of apoptosis. Single cell cloning assays were performed on diploid and polyploid cells to investigate their colony-forming capacities. Although the polyploid cells showed a reduced capacity for colony formation when compared with their diploid counterparts, they were consistently able to form colonies.
CONCLUSIONS:
AZD1152-HQPA- and ZM447439 are effective apoptosis-inducing agents in acute myeloid leukemia cell lines and primary acute myeloid leukemia cultures. However, their propensity to induce polyploidy does not inevitably result in apoptosis.