34 resultados para Visual motion energy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that context influences our perception of visual motion direction. For example, spatial and temporal context manipulations can be used to induce two well-known motion illusions: direction repulsion and the direction after-effect (DAE). Both result in inaccurate perception of direction when a moving pattern is either superimposed on (direction repulsion), or presented following adaptation to (DAE), another pattern moving in a different direction. Remarkable similarities in tuning characteristics suggest that common processes underlie the two illusions. What is not clear, however, is whether the processes driving the two illusions are expressions of the same or different neural substrates. Here we report two experiments demonstrating that direction repulsion and the DAE are, in fact, expressions of different neural substrates. Our strategy was to use each of the illusions to create a distorted perceptual representation upon which the mechanisms generating the other illusion could potentially operate. We found that the processes mediating direction repulsion did indeed access the distorted perceptual representation induced by the DAE. Conversely, the DAE was unaffected by direction repulsion. Thus parallels in perceptual phenomenology do not necessarily imply common neural substrates. Our results also demonstrate that the neural processes driving the DAE occur at an earlier stage of motion processing than those underlying direction repulsion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Object tracking is an active research area nowadays due to its importance in human computer interface, teleconferencing and video surveillance. However, reliable tracking of objects in the presence of occlusions, pose and illumination changes is still a challenging topic. In this paper, we introduce a novel tracking approach that fuses two cues namely colour and spatio-temporal motion energy within a particle filter based framework. We conduct a measure of coherent motion over two image frames, which reveals the spatio-temporal dynamics of the target. At the same time, the importance of both colour and motion energy cues is determined in the stage of reliability evaluation. This determination helps maintain the performance of the tracking system against abrupt appearance changes. Experimental results demonstrate that the proposed method outperforms the other state of the art techniques in the used test datasets.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Motion transparency provides a challenging test case for our understanding of how visual motion, and other attributes, are computed and represented in the brain. However, previous studies of visual transparency have used subjective criteria which do not confirm the existence of independent representations of the superimposed motions. We have developed measures of performance in motion transparency that require observers to extract information about two motions jointly, and therefore test the information that is simultaneously represented for each motion. Observers judged whether two motions were at 90 to one another; the base direction was randomized so that neither motion taken alone was informative. The precision of performance was determined by the standard deviations (S.D.s) of probit functions fitted to the data. Observers also made judgments of orthogonal directions between a single motion stream and a line, for one of two transparent motions against a line and for two spatially segregated motions. The data show that direction judgments with transparency can be made with comparable accuracy to segregated (non-transparent) conditions, supporting the idea that transparency involves the equivalent representation of two global motions in the same region. The precision of this joint direction judgment is, however, 2–3 times poorer than that for a single motion stream. The precision in directional judgment for a single stream is reduced only by a factor of about 1.5 by superimposing a second stream. The major effect in performance, therefore, appears to be associated with the need to compute and compare two global representations of motion, rather than with interference between the dot streams per se. Experiment 2tested the transparency of motions separated by a range of angles from 5 to 180 by requiring subjects to set a line matching the perceived direction of each motion. The S.D.s of these settings demonstrated that directions of transparent motions were represented independently for separations over 20. Increasing dot speeds from 1 to 10 deg/s improved directional performance but had no effect on transparency perception. Transparency was also unaffected by variations of density between 0.1 and 19 dots/deg2

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Manual interception, such as catching or hitting an approaching ball, requires the hand to contact a moving object at the right location and at the right time. Many studies have examined the neural mechanisms underlying the spatial aspects of goal-directed reaching, but the neural basis of the spatial and temporal aspects of manual interception are largely unknown. Here, we used repetitive transcranial magnetic stimulation (rTMS) to investigate the role of the human middle temporal visual motion area (MT+/V5) and superior parieto-occipital cortex (SPOC) in the spatial and temporal control of manual interception. Participants were required to reach-to-intercept a downward moving visual target that followed an unpredictably curved trajectory, presented on a screen in the vertical plane. We found that rTMS to MT+/V5 influenced interceptive timing and positioning, whereas rTMS to SPOC only tended to increase the spatial variance in reach end points for selected target trajectories. These findings are consistent with theories arguing that distinct neural mechanisms contribute to spatial, temporal, and spatiotemporal control of manual interception.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our understanding of how the visual system processes motion transparency, the phenomenon by which multiple directions of motion are perceived to co-exist in the same spatial region, has grown considerably in the past decade. There is compelling evidence that the process is driven by global-motion mechanisms. Consequently, although transparently moving surfaces are readily segmented over an extended space, the visual system cannot separate two motion signals that co-exist in the same local region. A related issue is whether the visual system can detect transparently moving surfaces simultaneously, or whether the component signals encounter a serial â??bottleneckâ?? during their processing? Our initial results show that, at sufficiently short stimulus durations, observers cannot accurately detect two superimposed directions; yet they have no difficulty in detecting one pattern direction in noise, supporting the serial-bottleneck scenario. However, in a second experiment, the difference in performance between the two tasks disappears when the component patterns are segregated. This discrepancy between the processing of transparent and non-overlapping patterns may be a consequence of suppressed activity of global-motion mechanisms when the transparent surfaces are presented in the same depth plane. To test this explanation, we repeated our initial experiment while separating the motion components in depth. The marked improvement in performance leads us to conclude that transparent motion signals are represented simultaneously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a speed-matching task, we measured the speed tuning of the dynamic motion aftereVect (MAE). The results of our Wrst experiment, in which we co-varied dot speed in the adaptation and test stimuli, revealed a speed tuning function. We sought to tease apart what contribution, if any, the test stimulus makes towards the observed speed tuning. This was examined by independently manipulating dot speed in the adaptation and test stimuli, and measuring the eVect this had on the perceived speed of the dynamic MAE. The results revealed that the speed tuning of the dynamic MAE is determined, not by the speed of the adaptation stimulus, but by the local motion characteristics of the dynamic test stimulus. The role of the test stimulus in determining the perceived speed of the dynamic MAE was conWrmed by showing that, if one uses a test stimulus containing two sources of local speed information, observers report seeing a transparent MAE; this is despite the fact that adaptation is induced using a single-speed stimulus. Thus while the adaptation stimulus necessarily determines perceived direction of the dynamic MAE, its perceived speed is determined by the test stimulus. This dissociation of speed and direction supports the notion that the processing of these two visual attributes may be partially independent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The processing of motion information by the visual system can be decomposed into two general stages; point-by-point local motion extraction, followed by global motion extraction through the pooling of the local motion signals. The direction aftereVect (DAE) is a well known phenomenon in which prior adaptation to a unidirectional moving pattern results in an exaggerated perceived direction diVerence between the adapted direction and a subsequently viewed stimulus moving in a diVerent direction. The experiments in this paper sought to identify where the adaptation underlying the DAE occurs within the motion processing hierarchy. We found that the DAE exhibits interocular transfer, thus demonstrating that the underlying adapted neural mechanisms are binocularly driven and must, therefore, reside in the visual cortex. The remaining experiments measured the speed tuning of the DAE, and used the derived function to test a number of local and global models of the phenomenon. Our data provide compelling evidence that the DAE is driven by the adaptation of motion-sensitive neurons at the local-processing stage of motion encoding. This is in contrast to earlier research showing that direction repulsion, which can be viewed as a simultaneous presentation counterpart to the DAE, is a global motion process. This leads us to conclude that the DAE and direction repulsion reflect interactions between motion-sensitive neural mechanisms at different levels of the motion-processing hierarchy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correlated electron-ion dynamics (CEID) is an extension of molecular dynamics that allows us to introduce in a correct manner the exchange of energy between electrons and ions. The formalism is based on a systematic approximation: small amplitude moment expansion. This formalism is extended here to include the explicit quantum spread of the ions and a generalization of the Hartree-Fock approximation for incoherent sums of Slater determinants. We demonstrate that the resultant dynamical equations reproduce analytically the selection rules for inelastic electron-phonon scattering from perturbation theory, which control the mutually driven excitations of the two interacting subsystems. We then use CEID to make direct numerical simulations of inelastic current-voltage spectroscopy in atomic wires, and to exhibit the crossover from ionic cooling to heating as a function of the relative degree of excitation of the electronic and ionic subsystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single cell recording studies have resulted in a detailed understanding of motion-sensitive neurons in non-human primate visual cortex. However, it is not known to what extent response properties of motion-sensitive neurons in the non-human primate brain mirror response characteristics of motion-sensitive neurons in the human brain. Using a motion adaptation paradigm, the direction aftereffect, we show that changes in the activity of human motion-sensitive neurons to moving dot patterns that differ in dot density bear a strong resemblance to data from macaque monkey. We also show a division-like inhibition between neural populations tuned to opposite directions, which also mirrors neural-inhibitory behaviour in macaque. These findings strongly suggest that motion-sensitive neurons in human and non-human primates share common response and inhibitory characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for controlling wave energy converters using active bipolar damping is described and compared with current control methods. The performance of active bipolar damping is modelled numerically for two distinct types of wave energy converter and it is found that in both cases the power capture can be significantly increased relative to optimal linear damping. It is shown that this is because active bipolar damping has the potential for providing a quasi-spring or quasi-inertia, which improves the wave energy converter's tuning and amplitude of motion, resulting in the increase in power capture observed. The practical implementation of active bipolar damping is also discussed. It is noted that active bipolar damping does not require a reactive energy store and thereby reduces the cost and eliminates losses due to the cycling of reactive energy. It is also noted that active bipolar damping could be implemented using a single constant pressure double-acting hydraulic cylinder and so potentially represents a simple, efficient, robust and economic solution to the control of wave energy converters.