89 resultados para Rashba spin splitting
Resumo:
We have determined photoionization spectra of Ar with excitation of the 3p(4)(P-3)4p states emphasizing the effects of two different classes of Ar+ spin-orbit interactions. The spin-orbit splitting of each Ar+ state adequately describes the resonant excitation of the quartet states of Ar+, and gives Ar photoionization cross sections with excitation of the 3p4(3P)4p P-2(3/2)o and P-4(5/2)o levels of Ar+ in sufficiently good agreement with experiment to identify the observed resonances and to estimate the excitation strengths. In addition, we demonstrate the importance of spin-orbit induced mixing of different Ar+ LS-coupled states for observables such as the alignment of the 3p(4)(P-3)4p P-4(5/2)o level and the excitation of Rydberg series converging to the 3p(4)(P-3)4p S-2(o) and S-4(o) thresholds.
Resumo:
The triple-differential cross section for ionization of a heavy atom is shown to depend on the spin of the incident electron even if this is polarized entirely parallel or antiparallel to its direction of propagation, the atom is unpolarized, and the spins of the ejected electrons are not resolved. Quantitative predictions for the spin asymmetry are presented in a relativistic distorted-wave Born approximation. Simple physical models are introduced to understand both these results and further symmetry properties involving the reversal of a spatial momentum component also.
Resumo:
High-fidelity quantum computation and quantum state transfer are possible in short spin chains. We exploit a system based on a dispersive qubit-boson interaction to mimic XY coupling. In this model, the usually assumed nearest-neighbor coupling is no longer valid: all the qubits are mutually coupled. We analyze the performances of our model for quantum state transfer showing how preengineered coupling rates allow for nearly optimal state transfer. We address a setup of superconducting qubits coupled to a microstrip cavity in which our analysis may be applied.
Resumo:
A method for investigating the dynamics of atomic magnetic moments in current-carrying magnetic point contacts under bias is presented. This combines the nonequilibrium Green's function (NEGF) method for evaluating the current and the charge density with a description of the dynamics of the magnetization in terms of quasistatic thermally activated transitions between stationary configurations. This method is then implemented in a tight-binding (TB) model with parameters chosen to simulate the main features of the electronic structures of magnetic transition metals. We investigate the domain wall (DW) migration in magnetic monoatomic chains sandwiched between magnetic leads, and for realistic parameters find that collinear arrangement of the magnetic moments of the chain is always favorable. Several stationary magnetic configurations are identified, corresponding to a different number of Bloch walls in the chain and to a different current. The relative stability of these configurations depends on the geometrical details of the junction and on the bias; however, we predict transitions between different configurations with activation barriers of the order of a few tens of meV. Since different magnetic configurations are associated with different resistances, this suggests an intrinsic random telegraph noise at microwave frequencies in the I-V curves of magnetic atomic point contacts at room temperature. Finally, we investigate whether or not current-induced torques are conservative.
Resumo:
We investigate the interplay between magnetic and structural dynamics in ferromagnetic atomic point contacts. In particular, we look at the effect of the atomic relaxation on the energy barrier for magnetic domain wall migration and, reversely, at the effect of the magnetic state on the mechanical forces and structural relaxation. We observe changes of the barrier height due to the atomic relaxation up to 200%, suggesting a very strong coupling between the structural and the magnetic degrees of freedom. The reverse interplay is weak; i.e., the magnetic state has little effect on the structural relaxation at equilibrium or under nonequilibrium, current-carrying conditions.
Resumo:
A standard problem within universities is that of teaching space allocation which can be thought of as the assignment of rooms and times to various teaching activities. The focus is usually on courses that are expected to fit into one room. However, it can also happen that the course will need to be broken up, or ‘split’, into multiple sections. A lecture might be too large to fit into any one room. Another common example is that of seminars or tutorials. Although hundreds of students may be enrolled on a course, it is often subdivided into particular types and sizes of events dependent on the pedagogic requirements of that particular course. Typically, decisions as to how to split courses need to be made within the context of limited space requirements. Institutions do not have an unlimited number of teaching rooms, and need to effectively use those that they do have. The efficiency of space usage is usually measured by the overall ‘utilisation’ which is basically the fraction of the available seat-hours that are actually used. A multi-objective optimisation problem naturally arises; with a trade-off between satisfying preferences on splitting, a desire to increase utilisation, and also to satisfy other constraints such as those based on event location and timetabling conflicts. In this paper, we explore such trade-offs. The explorations themselves are based on a local search method that attempts to optimise the space utilisation by means of a ‘dynamic splitting’ strategy. The local moves are designed to improve utilisation and satisfy the other constraints, but are also allowed to split, and un-split, courses so as to simultaneously meet the splitting objectives.
Resumo:
The Wigner transition in a jellium model of cylindrical nanowires has been investigated by density-functional computations using the local spin-density approximation. A wide range of background densities rho(b) has been explored from the nearly ideal metallic regime (r(s)=[3/4 pi rho(b)](1/3)=1) to the high correlation limit (r(s)=100). Computations have been performed using an unconstrained plane wave expansion for the Kohn-Sham orbitals and a large simulation cell with up to 480 electrons. The electron and spin distributions retain the cylindrical symmetry of the Hamiltonian at high density, while electron localization and spin polarization arise nearly simultaneously in low-density wires (r(s)similar to 30). At sufficiently low density (r(s)>= 40), the ground-state electron distribution is the superposition of well defined and nearly disjoint droplets, whose charge and spin densities integrate almost exactly to one electron and 1/2 mu(B), respectively. Droplets are arranged on radial shells and define a distorted lattice whose structure is intermediate between bcc and fcc. Dislocations and grain boundaries are apparent in the droplets' configuration found by our simulations. Our computations aim at modeling the behavior of experimental low-carried density systems made of lightly doped semiconductor nanostructures or conducting polymers.
Resumo:
This paper reports the fabrication of SSOI (Silicon on Silicide On Insulator) substrates with active silicon regions only 0.5mum thick, incorporating LPCVD low resistivity tungsten silicide (WSix) as the buried layer. The substrates were produced using ion splitting and two stages of wafer bonding. Scanning acoustic microscope imaging confirmed that the bond interfaces are essentially void-free. These SSOI wafers are designed to be employed as substrates for mm-wave reflect-array diodes, and the required selective etch technology is described together with details of a suitable device.