47 resultados para Pulsed Inductive Plasmoid Thrusters
Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization
Resumo:
Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.
Resumo:
Insulated gate bipolar transistor (IGBT) modules are important safety critical components in electrical power systems. Bond wire lift-off, a plastic deformation between wire bond and adjacent layers of a device caused by repeated power/thermal cycles, is the most common failure mechanism in IGBT modules. For the early detection and characterization of such failures, it is important to constantly detect or monitor the health state of IGBT modules, and the state of bond wires in particular. This paper introduces eddy current pulsed thermography (ECPT), a nondestructive evaluation technique, for the state detection and characterization of bond wire lift-off in IGBT modules. After the introduction of the experimental ECPT system, numerical simulation work is reported. The presented simulations are based on the 3-D electromagnetic-thermal coupling finite-element method and analyze transient temperature distribution within the bond wires. This paper illustrates the thermal patterns of bond wires using inductive heating with different wire statuses (lifted-off or well bonded) under two excitation conditions: nonuniform and uniform magnetic field excitations. Experimental results show that uniform excitation of healthy bonding wires, using a Helmholtz coil, provides the same eddy currents on each, while different eddy currents are seen on faulty wires. Both experimental and numerical results show that ECPT can be used for the detection and characterization of bond wires in power semiconductors through the analysis of the transient heating patterns of the wires. The main impact of this paper is that it is the first time electromagnetic induction thermography, so-called ECPT, has been employed on power/electronic devices. Because of its capability of contactless inspection of multiple wires in a single pass, and as such it opens a wide field of investigation in power/electronic devices for failure detection, performance characterization, and health monitoring.
Atomic oxygen surface loss coefficient measurements in a capacitive/inductive radio-frequency plasma
Resumo:
Spatially resolved measurements of the atomic oxygen densities close to a sample surface in a dual mode (capacitive/inductive) rf plasma are used to measure the atomic oxygen surface loss coefficient beta on stainless steel and aluminum substrates, silicon and silicon dioxide wafers, and on polypropylene samples. beta is found to be particularly sensitive to the gas pressure for both operating modes. It is concluded that this is due to the effect of changing atom and ion flux to the surface. (C) 2002 American Institute of Physics.
Resumo:
A technique for producing cold ensembles of trapped highly charged ions is described. The ions, trapped in an electron beam ion trap, can undergo a drastic contraction during the pulsed mode of evaporative cooling, if a truncated Boltzmann distribution is assumed. The underlying theory and the experimental results are presented.
Resumo:
The sheath dynamics in the afterglow of a pulsed inductively coupled plasma, operated in hydrogen, is investigated. It is found that the sheath potential does not fully collapse in the early post-discharge. Time resolved measurements of the positive ion flux in a hydrogen plasma, using a mass resolved ion energy analyser, reveal that a constant 2 eV mean ion energy persists for several hundred micro-seconds in the afterglow. The presence of a finite sheath potential is explained by super-elastic collisions between vibrationally excited hydrogen molecules and electrons in the afterglow, leading to an electron temperature of about 0.5 eV. Plasma density decay times measured using both the mass resolved energy analyser and a Langmuir probe are in good agreement. Vibrational temperatures measured using optical emission spectroscopy support the theory of electron heating through super-elastic collisions with vibrationally excited hydrogen molecules. Measurements are also supported by numerical simulations and modelling results.
Resumo:
175 nm-thick Ba0.5Sr0.5TiO3 (BST) thin film fabricated by pulsed laser deposition (PLD) technique is found to be a mixture of two distributions of material. We discuss whether these two components are nano-regions of paraelectric and ferroelectric phases, or a bimodal grain-size distribution, or an effect of oxygen vacancy gradient from the electrode interface. The fraction of switchable ferroelectric phase decreases under bipolar pulsed fields, but it recovers after removal of the external fields. The plot of capacitance in decreasing dc voltage (C(Vdown arrow) versus that in increasing dc 61 voltage C(Vup arrow) is a superposition of overlapping of two triangles, in contrast to one well-defined triangle for typical ferroelectric SrBi2Ta2O9 thin films.
Resumo:
We describe evidence that certain inductive phenomena are associated with IQ, that different inductive phenomena emerge at different ages, and that the effects of causal knowledge on induction are decreased under conditions of memory load. On the basis of this evidence we argue that there is more to inductive reasoning than semantic cognition.
Resumo:
According to the diversity principle, diverse evidence is strong evidence. There has been considerable evidence that people respect this principle in inductive reasoning. However, exceptions may be particularly informative. Medin, Coley, Storms, and Hayes (2003) introduced a relevance theory of inductive reasoning and used this theory to predict exceptions, including the nondiversity-by-property-reinforcement effect. A new experiment in which this phenomenon was investigated is reported here. Subjects made inductive strength judgments and similarity judgments for stimuli from Medin et al. (2003). The inductive strength judgments showed the same pattern as that in Medin et al. (2003); however, the similarity judgments suggested that the pattern should be interpreted as a diversity effect, rather than as a nondiversity effect. It is concluded that the evidence regarding the predicted nondiversity-by-property-reinforcement effect does not give distinctive support for relevance theory, although this theory does address other results.