6 resultados para Pulsed Inductive Plasmoid Thrusters

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed pulsed neutron measurements have been performed in graphite assemblies ranging in size from 30.48 cm x 38.10 cm x 38.10 cm to 91.44 cm x 66.67 cm x 66.67 cm. Results of the measurement have been compared to a modeled theoretical computation.

In the first set of experiments, we measured the effective decay constant of the neutron population in ten graphite stacks as a function of time after the source burst. We found the decay to be non-exponential in the six smallest assemblies, while in three larger assemblies the decay was exponential over a significant portion of the total measuring interval. The decay in the largest stack was exponential over the entire ten millisecond measuring interval. The non-exponential decay mode occurred when the effective decay constant exceeded 1600 sec^( -1).

In a second set of experiments, we measured the spatial dependence of the neutron population in four graphite stacks as a function of time after the source pulse. By doing an harmonic analysis of the spatial shape of the neutron distribution, we were able to compute the effective decay constants of the first two spatial modes. In addition, we were able to compute the time dependent effective wave number of neutron distribution in the stacks.

Finally, we used a Laplace transform technique and a simple modeled scattering kernel to solve a diffusion equation for the time and energy dependence of the neutron distribution in the graphite stacks. Comparison of these theoretical results with the results of the first set of experiments indicated that more exact theoretical analysis would be required to adequately describe the experiments.

The implications of our experimental results for the theory of pulsed neutron experiments in polycrystalline media are discussed in the last chapter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of this thesis, experiments utilizing an NMR phase interferometric concept are presented. The spinor character of two-level systems is explicitly demonstrated by using this concept. Following this is the presentation of an experiment which uses this same idea to measure relaxation times of off-diagonal density matrix elements corresponding to magnetic-dipole-forbidden transitions in a ^(13)C-^1H, AX spin system. The theoretical background for these experiments and the spin dynamics of the interferometry are discussed also.

The second part of this thesis deals with NMR dipolar modulated chemical shift spectroscopy, with which internuclear bond lengths and bond angles with respect to the chemical shift principal axis frame are determined from polycrystalline samples. Experiments using benzene and calcium formate verify the validity of the technique in heteronuclear (^(13)C-^1H) systems. Similar experiments on powdered trichloroacetic acid confirm the validity in homonuclear (^1H- ^1H) systems. The theory and spin dynamics are explored in detail, and the effects of a number of multiple pulse sequences are discussed.

The last part deals with an experiment measuring the ^(13)C chemical shift tensor in K_2Pt(CN)_4Br_(0.3) • 3H_2O, a one-dimensional conductor. The ^(13)C spectra are strongly affected by ^(14)N quadrupolar interactions via the ^(13)C - ^(14)N dipolar interaction. Single crystal rotation spectra are shown.

An appendix discussing the design, construction, and performance of a single-coil double resonance NMR sample probe is included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed.

Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure.

The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pulsed neutron technique has been used to investigate the decay of thermal neutrons in two adjacent water-borated water finite media. Experiments were performed with a 6x6x6 inches cubic assembly divided in two halves by a thin membrane and filled with pure distilled water on one side and borated water on the other side.

The fundamental decay constant was measured versus the boric acid concentration in the poisoned medium. The experimental results showed good agreement with the predictions of the time dependent diffusion model. It was assumed that the addition of boric acid increases the absorption cross section of the poisoned medium without affecting its diffusion properties: In these conditions, space-energy separability and the concept of an “effective” buckling as derived from diffusion theory were introduced. Their validity was supported by the experimental results.

Measurements were performed with the absorption cross section of the poisoned medium increasing gradually up to 16 times its initial value. Extensive use of the IBM 7090-7094 Computing facility was made to analyze properly the decay data (Frantic Code). Attention was given to the count loss correction scheme and the handling of the statistics involved. Fitting of the experimental results into the analytical form predicted by the diffusion model led to

Ʃav = 4721 sec-1 (±150)

Do = 35972 cm2sec-1 (±800) for water at 21˚C

C (given) = 3420 cm4sec-1

These values, when compared with published data, show that the diffusion model is adequate in describing the experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents structural investigations of molecular ions and ionic clusters using vibrational predissociation spectroscopy. Experimentally, a pulsed beam of the mass-selected ion is crossed by a tunable infrared laser beam generated by a Nd:YAG pumped LiNbO_3 optical parametric oscillator. The resulting fragment ion is mass-analyzed and detected, with its intensity as a function of the laser wavelength being the "action" spectrum of the parent ion. In the case of SiH_7^+, we observed a vibrational band centered at 3866 cm^(-1) with clear P, Q, R branches, which is assigned as a perturbed H_2 stretch. The absence of a second H_2 band suggests that the ion forms a symmetric complex with a structure H_2•SiH_3^+•H_2 , in contrast to the species CH_7^+, which has the structure CH_5^+•H_2. The infrared spectra of NO_2^+(H_2O)_n clusters exhibit a marked change with cluster size, indicating that an intracluster reaction occurs with sufficient solvation. Specifically, in NO_2^+(H_2O)_n clusters where n≤3, H_2O binds to a nitronium ion core; but at n=4 the NO_2^+ reacts, transforming the cluster to a new structure of H_3O^+•(H_2O)_(n_2)•HNO_3. For protonated chlorine nitrate, we have observed two distinct isomers previously predicted by ab initio calculations: NO_2^+•(HOC1), the lowest energy isomer, and (ClO)(HO)NO^+, a covalently bonded isomer about 20 kcal/mol higher in energy. Both isomers decompose to NO_2^+ and HOCl upon photo-excitation. These results for HClONO_2^+ lend strong support to the involvement of an ionic mechanism in the reaction of ClONO_2 on polar stratospheric cloud surfaces, a critical step in the dramatic springtime depletion of ozone over Antarctica. Current research activities on halide-solvent clusters and metal-ligand complexes as well as technological improvements of the apparatus are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of the vulva of the nematode Caenorhabditis elegans is induced by a signal from the anchor cell of the somatic gonad. Activity of the gene lin-3 is required for the Vulval Precursor Cells (VPCs) to assume vulval fates. It is shown here that lin-3 encodes the vulval-inducing signal.

lin-3 was molecularly cloned by transposon-tagging and shown to encode a nematode member ofthe Epidermal Growth Factor (EGF) family. Genetic epistasis experiments indicate that lin-3 acts upstream of let-23, which encodes a homologue of the EGF-Receptor.

lin-3 transgenes that contain multiple copies of wild-type lin-3 genomic DNA clones confer a dominant multivulva phenotype in which up to all six of the VPCs assume vulval fates. The properties of these trans genes suggest that lin-3 can act in the anchor cell to induce vulval fates. Ablation of the gonadal precursors, which prevents the development of the AC, strongly reduces the ability of lin-3 transgenes to stimulate vulval development. A lin-3 recorder transgene that retains the ability to stimulate vulval development is expressed specifically in the anchor cell at the time of vulval induction.

Expression of an obligate secreted form of the EGF domain of Lin-S from a heterologous promoter is sufficient to induce vulval fates in the absence of the normal source of the inductive signal. This result suggests that Lin-S may act as a secreted factor, and that Lin-S may be the sole vulval-inducing signal made by the anchor cell.

lin-3 transgenes can cause adjacent VPCs to assume the 1° vulval fate and thus can override the action of the lateral signal mediated by lin-12 that normally prevents adjacent 1° fates. This indicates that the production of Lin-3 by the anchor cell must be limited to allow the VPCs to assume the proper pattern of fates of so 3° 3° 2° 1° 2° 3°.