43 resultados para Predicate encryption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hardware performance analysis of the SHACAL-2 encryption algorithm is presented in this paper. SHACAL-2 was one of four symmetric key algorithms chosen in the New European Schemes for Signatures, Integrity and Encryption (NESSIE) initiative in 2003. The paper describes a fully pipelined encryption SHACAL-2 architecture implemented on a Xilinx Field Programmable Gate Array (FPGA) device that achieves a throughput of over 25 Gbps. This is the fastest private key encryption algorithm architecture currently available. The SHACAL-2 decryption algorithm is also defined in the paper as it was not provided in the NESSIE submission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generic architecture for implementing the advanced encryption standard (AES) encryption algorithm in silicon is proposed. This allows the instantiation of a wide range of chip specifications, with these taking the form of semiconductor intellectual property (IP) cores. Cores implemented from this architecture can perform both encryption and decryption and support four modes of operation: (i) electronic codebook mode; (ii) output feedback mode; (iii) cipher block chaining mode; and (iv) ciphertext feedback mode. Chip designs can also be generated to cover all three AES key lengths, namely 128 bits, 192 bits and 256 bits. On-the-fly generation of the round keys required during decryption is also possible. The general, flexible and multi-functional nature of the approach described contrasts with previous designs which, to date, have been focused on specific implementations. The presented ideas are demonstrated by implementation in FPGA technology. However, the architecture and IP cores derived from this are easily migratable to other silicon technologies including ASIC and PLD and are capable of covering a wide range of modem communication systems cryptographic requirements. Moreover, the designs produced have a gate count and throughput comparable with or better than the previous one-off solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of advanced encryption standard (AES) implementation using a normal basis is presented. The method is based on a lookup technique that makes use of inversion and shift registers, which leads to a smaller size of lookup for the S-box than its corresponding implementations. The reduction in the lookup size is based on grouping sets of inverses into conjugate sets which in turn leads to a reduction in the number of lookup values. The above technique is implemented in a regular AES architecture using register files, which requires less interconnect and area and is suitable for security applications. The results of the implementation are competitive in throughput and area compared with the corresponding solutions in a polynomial basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an improved video encryption method for encrypting the sign bit of motion vectors is proposed based on H.264/AVC, which belongs to selective encryption. This method improves upon previous work involving the sign bit encryption of motion vectors by ensuring the four candidates for the encrypted motion vectors are always located in two orthogonal lines. The improved method can provide a much more effective scrambling effect while keeping the encrypted stream format-compliant and the compression ratio unchanged. The combination of the proposed method with encryption of intra prediction modes can further enhance the scrambling effect, especially for the first few frames which are left clear when only the motion vectors are encrypted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, two fast selective encryption methods for context-adaptive variable length coding and context-adaptive binary arithmetic coding in H.264/AVC were proposed by Shahid et al. In this paper, it was demonstrated that these two methods are not as efficient as only encrypting the sign bits of nonzero coefficients. Experimental results showed that without encrypting the sign bits of nonzero coefficients, these two methods can not provide a perceptual scrambling effect. If a much stronger scrambling effect is required, intra prediction modes, and the sign bits of motion vectors can be encrypted together with the sign bits of nonzero coefficients. For practical applications, the required encryption scheme should be customized according to a user's specified requirement on the perceptual scrambling effect and the computational cost. Thus, a tunable encryption scheme combining these three methods is proposed for H.264/AVC. To simplify its implementation and reduce the computational cost, a simple control mechanism is proposed to adjust the control factors. Experimental results show that this scheme can provide different scrambling levels by adjusting three control factors with no or very little impact on the compression performance. The proposed scheme can run in real-time and its computational cost is minimal. The security of the proposed scheme is also discussed. It is secure against the replacement attack when all three control factors are set to one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud computing technology has rapidly evolved over the last decade, offering an alternative way to store and work with large amounts of data. However data security remains an important issue particularly when using a public cloud service provider. The recent area of homomorphic cryptography allows computation on encrypted data, which would allow users to ensure data privacy on the cloud and increase the potential market for cloud computing. A significant amount of research on homomorphic cryptography appeared in the literature over the last few years; yet the performance of existing implementations of encryption schemes remains unsuitable for real time applications. One way this limitation is being addressed is through the use of graphics processing units (GPUs) and field programmable gate arrays (FPGAs) for implementations of homomorphic encryption schemes. This review presents the current state of the art in this promising new area of research and highlights the interesting remaining open problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully homomorphic encryption (FHE) scheme is envisioned as a key cryptographic tool in building a secure and reliable cloud computing environment, as it allows arbitrary evaluation of a ciphertext without revealing the plaintext. However, existing FHE implementations remain impractical due to very high time and resource costs. To the authors’ knowledge, this paper presents the first hardware implementation of a full encryption primitive for FHE over the integers using FPGA technology. A large-integer multiplier architecture utilising Integer-FFT multiplication is proposed, and a large-integer Barrett modular reduction module is designed incorporating the proposed multiplier. The encryption primitive used in the integer-based FHE scheme is designed employing the proposed multiplier and modular reduction modules. The designs are verified using the Xilinx Virtex-7 FPGA platform. Experimental results show that a speed improvement factor of up to 44 is achievable for the hardware implementation of the FHE encryption scheme when compared to its corresponding software implementation. Moreover, performance analysis shows further speed improvements of the integer-based FHE encryption primitives may still be possible, for example through further optimisations or by targeting an ASIC platform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fully Homomorphic Encryption (FHE) is a recently developed cryptographic technique which allows computations on encrypted data. There are many interesting applications for this encryption method, especially within cloud computing. However, the computational complexity is such that it is not yet practical for real-time applications. This work proposes optimised hardware architectures of the encryption step of an integer-based FHE scheme with the aim of improving its practicality. A low-area design and a high-speed parallel design are proposed and implemented on a Xilinx Virtex-7 FPGA, targeting the available DSP slices, which offer high-speed multiplication and accumulation. Both use the Comba multiplication scheduling method to manage the large multiplications required with uneven sized multiplicands and to minimise the number of read and write operations to RAM. Results show that speed up factors of 3.6 and 10.4 can be achieved for the encryption step with medium-sized security parameters for the low-area and parallel designs respectively, compared to the benchmark software implementation on an Intel Core2 Duo E8400 platform running at 3 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very high speed and low area hardware architectures of the SHACAL-1 encryption algorithm are presented in this paper. The SHACAL algorithm was a submission to the New European Schemes for Signatures, Integrity and Encryption (NESSIE) project and it is based on the SHA-1 hash algorithm. To date, there have been no performance metrics published on hardware implementations of this algorithm. A fully pipelined SHACAL-1 encryption architecture is described in this paper and when implemented on a Virtex-II X2V4000 FPGA device, it runs at a throughput of 17 Gbps. A fully pipelined decryption architecture achieves a speed of 13 Gbps when implemented on the same device. In addition, iterative architectures of the algorithm are presented. The SHACAL-1 decryption algorithm is derived and also presented in this paper, since it was not provided in the submission to NESSIE. © Springer-Verlag Berlin Heidelberg 2003.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

19.Wang, Y, O’Neill, M, Kurugollu, F, Partial Encryption by Randomized Zig-Zag Scanning for Video Encoding, IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, May 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large integer multiplication is a major performance bottleneck in fully homomorphic encryption (FHE) schemes over the integers. In this paper two optimised multiplier architectures for large integer multiplication are proposed. The first of these is a low-latency hardware architecture of an integer-FFT multiplier. Secondly, the use of low Hamming weight (LHW) parameters is applied to create a novel hardware architecture for large integer multiplication in integer-based FHE schemes. The proposed architectures are implemented, verified and compared on the Xilinx Virtex-7 FPGA platform. Finally, the proposed implementations are employed to evaluate the large multiplication in the encryption step of FHE over the integers. The analysis shows a speed improvement factor of up to 26.2 for the low-latency design compared to the corresponding original integer-based FHE software implementation. When the proposed LHW architecture is combined with the low-latency integer-FFT accelerator to evaluate a single FHE encryption operation, the performance results show that a speed improvement by a factor of approximately 130 is possible.