59 resultados para Multi-phase structures
Resumo:
The current theory of catalyst activity in heterogeneous catalysis is mainly obtained from the study of catalysts with mono-phases, while most catalysts in real systems consist of multi-phases, the understanding of which is far short of chemists' expectation. Density functional theory (DFT) and micro-kinetics simulations are used to investigate the activities of six mono-phase and nine bi-phase catalysts, using CO hydrogenation that is arguably the most typical reaction in heterogeneous catalysis. Excellent activities that are beyond the activity peak of traditional mono-phase volcano curves are found on some bi-phase surfaces. By analyzing these results, a new framework to understand the unexpected activities of bi-phase surfaces is proposed. Based on the framework, several principles for the design of multi-phase catalysts are suggested. The theoretical framework extends the traditional catalysis theory to understand more complex systems.
Resumo:
In liquid-phase reaction systems, the role of the solvent is often limited to the simple requirement of dissolving and/or diluting substrates. However, the correct choice, either pure or mixed, can significantly influence both reaction rate and selectivity. For multi-phase heterogeneously catalysed reactions observed variations may be due to changes in mass transfer rates, reaction mechanism, reaction kinetics, adsorption properties and combinations thereof. The liquid-phase hydrogenation of 2-butanone to 2-butanol over a Ru/SiO catalyst, for example, shows such complex rate behaviour when varying water/isopropyl alcohol (IPA) solvent ratios. In this paper, we outline a strategy which combines measured rate data with physical property measurements and molecular simulation in order to gain a more fundamental understanding of mixed solvent effects for this heterogeneously catalysed reaction. By combining these techniques, the observed complex behaviour of rate against water fraction is shown to be a combination of both mass transfer and chemical effects. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Gas-liquid processing in microreactors remains mostly restricted to the laboratory scale due to the complexity and expenditure needed for an adequate numbering-up with a uniform flow distribution. Here, the numbering-up is presented for multi-phase (gas-liquid) flow in microreactor suitable for a production capacity of kg/h. Based on the barrier channels concept, the barrier-based micro/milli reactor (BMMR) is designed and fabricated to deliver flow non-uniformity of less than 10%. The BMMR consists of eight parallel channels all operated in the Taylor flow regime and with a liquid flow rate up to 150. mL/min. The quality of the flow distribution is reported by studying two aspects. The first aspect is the influence of different viscosities, surface tensions and flow rates. The second aspect is the influence of modularity by testing three different reaction channels type: (1) square channels fabricated in a stainless steel plate, (2) square channels fabricated in a glass plate, and (3) circular channels (capillaries) made of stainless steel. Additionally, the BMMR is compared to that of a single channel regard the slug and bubble lengths and bubble generation frequency. The results pave the ground for bringing multi-phase flow in microreactor one step closer for large scale production via numbering-up. © 2012 Elsevier B.V.
Resumo:
The rate and, more importantly, selectivity (ketone vs aromatic ring) of the hydrogenation of 4-phenyl-2-butanone over a Pt/TiO2 catalyst have been shown to vary with solvent. In this study, a fundamental kinetic model for this multi-phase reaction has been developed incorporating statistical analysis methods to strengthen the foundations of mechanistically sound kinetic models. A 2-site model was determined to be most appropriate, describing aromatic hydrogenation (postulated to be over a platinum site) and ketone hydrogenation (postulated to be at the platinum–titania interface). Solvent choice has little impact on the ketone hydrogenation rate constant but strongly impacts aromatic hydrogenation due to solvent-catalyst interaction. Reaction selectivity is also correlated to a fitted product adsorption constant parameter. The kinetic analysis method shown has demonstrated the role of solvents in influencing reactant adsorption and reaction selectivity.
Resumo:
In 2015 Ireland has arguably begun to make its first bold steps in confronting the challenges of energy transition, with the objective of a “low carbon, climate resilient and environmentally sustainable economy by the end of the year 2050” expressed in the 2015 Climate Action and Low Carbon Development Bill and the 2015 Energy Bill acknowledging that energy transformation relied on a new breed of ‘energy citizens’. These represent the first formal articulation of Ireland’s ambition to engage in a radical, long-term and far-reaching transition process, and raises a myriad of questions over how this can be operationalised, resourced and whether it can maintain political momentum. A range of perspectives on these issues is provided in the growing body of literature on transition theories (Rotmans et al 2001, Markard et al 2012) and the inter-disciplinary EPA-funded CC Transitions project, based at Queen’s University Belfast, represents an attempt to translate this into the context of Ireland’s institutions and technological profile. By relating this to international research on sustainability transitions, which conceptualises transitions as multi-level, multi-phase and multi-actor processes, this paper will explore the opportunities of alternative pathways that could take Ireland towards a more progressing, inclusive and effective low carbon future. Drawing on a number of case studies it will highlight some of the capacities for transition required in Irish society: where these exist, how they are being built or enabled, and the barriers to wider social change.
Resumo:
[Ag(NH3)(2)](ClO4) is obtained from a solution of AgClO4 in cone. ammonia as colourless single crystals (orthorhombic, Pnmn, Z = 4, a = 795.2(1) pm, b 617.7(1) pm, c = 1298.2(2) pm, R-all = 0.0494). The structure consists of linearly coordinated cations, [Ag(NH3)(2)](+), stacked in a staggered conformation and of tetrahedral (ClO4)(-) anions. A first order phase transition was observed between 210 and 200 K and the crystal structure of the low-temperature modification (monoclinic. P2/m, Z = 4, a = 789.9(5) pm, b = 604.1(5) pm, c = 1290.4(5) pm, beta = 97.436(5)degrees, at 170 K, R-all = 0.0636) has also been solved. Spectroscopic investigations (IR/Raman) have been carried out and the assignment of the spectra is discussed.
Resumo:
PURPOSE The appropriate selection of patients for early clinical trials presents a major challenge. Previous analyses focusing on this problem were limited by small size and by interpractice heterogeneity. This study aims to define prognostic factors to guide risk-benefit assessments by using a large patient database from multiple phase I trials. PATIENTS AND METHODS Data were collected from 2,182 eligible patients treated in phase I trials between 2005 and 2007 in 14 European institutions. We derived and validated independent prognostic factors for 90-day mortality by using multivariate logistic regression analysis. Results The 90-day mortality was 16.5% with a drug-related death rate of 0.4%. Trial discontinuation within 3 weeks occurred in 14% of patients primarily because of disease progression. Eight different prognostic variables for 90-day mortality were validated: performance status (PS), albumin, lactate dehydrogenase, alkaline phosphatase, number of metastatic sites, clinical tumor growth rate, lymphocytes, and WBC. Two different models of prognostic scores for 90-day mortality were generated by using these factors, including or excluding PS; both achieved specificities of more than 85% and sensitivities of approximately 50% when using a score cutoff of 5 or higher. These models were not superior to the previously published Royal Marsden Hospital score in their ability to predict 90-day mortality. CONCLUSION Patient selection using any of these prognostic scores will reduce non-drug-related 90-day mortality among patients enrolled in phase I trials by 50%. However, this can be achieved only by an overall reduction in recruitment to phase I studies of 20%, more than half of whom would in fact have survived beyond 90 days.
Resumo:
An improved dual-gas quasi-phase matching (QPM) foil target for high harmonic generation (HHG) is presented. The target can be setup with 12 individual gas inlets each feeding multiple nozzles separated by a minimum distance of 10 μm. Three-dimensional gas density profiles of these jets were measured using a Mach-Zehnder Interferometer. These measurements reveal how the jets influence the density of gas in adjacent jets and how this leads to increased local gas densities. The analysis shows that the gas profiles of the jets are well defined up to a distance of about 300 μm from the orifice. This target design offers experimental flexibility, not only for HHG/QPM investigations, but also for a wide range of experiments due to the large number of possible jet configurations. We demonstrate the application to controlled phase tuning in the extreme ultraviolet using a 1 kHz-10 mJ-30 fs-laser system where interference between two jets in the spectral range from 17 to 30 nm was observed.
Resumo:
We report results of first-principles calculations on the thermodynamic stability of different Sr adatom structures that have been proposed to explain some of the observed reconstructions of the (001) surface of strontium titanate (Kubo and Nozoye 2003 Surf Sci. 542 177). From surface free energy calculations, a phase diagram is constructed indicating the range of conditions over which each structure is most stable. These results are compared with Kubo and Nozoye's experimental observations. It is concluded that low Sr adatom coverage structures can only be explained if the surface is far from equilibrium. Intermediate coverage structures are stable only if the surface is in or very nearly in equilibrium with the strontium oxide.
Resumo:
A force field model of phosphorus has been developed based on density functional (DF) computations and experimental results, covering low energy forms of local tetrahedral symmetry and more compact (simple cubic) structures that arise with increasing pressure. Rules tailored to DF data for the addition, deletion, and exchange of covalent bonds allow the system to adapt the bonding configuration to the thermodynamic state. Monte Carlo simulations in the N-P-T ensemble show that the molecular (P-4) liquid phase, stable at low pressure P and relatively low temperature T, transforms to a polymeric (gel) state on increasing either P or T. These phase changes are observed in recent experiments at similar thermodynamic conditions, as shown by the close agreement of computed and measured structure factors in the molecular and polymer phases. The polymeric phase obtained by increasing pressure has a dominant simple cubic character, while the polymer obtained by raising T at moderate pressure is tetrahedral. Comparison with DF results suggests that the latter is a semiconductor, while the cubic form is metallic. The simulations show that the T-induced polymerization is due to the entropy of the configuration of covalent bonds, as in the polymerization transition in sulfur. The transition observed with increasing P is the continuation at high T of the black P to arsenic (A17) structure observed in the solid state, and also corresponds to a semiconductor to metal transition. (C) 2004 American Institute of Physics.
Resumo:
The functional properties of two types of barium strontium titanate (BST) thin film capacitor structures were studied: one set of structures was made using pulsed-laser deposition (PLD) and the other using chemical solution deposition. While initial observations on PLD films looking at the behavior of T-m (the temperature at which the maximum dielectric constant was observed) and T-c(*) (from Curie-Weiss analysis) suggested that the paraelectric-ferroelectric phase transition was progressively depressed in temperature as BST film thickness was reduced, further work suggested that this was not the case. Rather, it appears that the temperatures at which phase transitions occur in the thin films are independent of film thickness. Further, the fact that in many cases three transitions are observable, suggests that the sequence of symmetry transitions that occur in the thin films are the same as in bulk single crystals. This new observation could have implications for the validity of the theoretically produced thin film phase diagrams derived by Pertsev [Phys. Rev. Lett. 80, 1988 (1998)] and extended by Ban and Alpay [J. Appl. Phys. 91, 9288 (2002)]. In addition, the fact that T-m measured for virgin films does not correlate well with the inherent phase transition behavior, suggests that the use of T-m alone to infer information about the thermodynamics of thin film capacitor behavior, may not be sufficient. (C) 2004 American Institute of Physics.
Resumo:
: Static calculation and preliminary kinetic Monte Carlo simulation studies are undertaken for the nucleation and growth on a model system which follows a Frank-van der Merwe mechanism. In the present case, we consider the deposition of Ag on Au(100) and Au(111) surfaces. The interactions were calculated using the embedded atom model. The kinetics of formation and growth of 2D Ag structures on Au(100) and Au(111) is investigated and the influence of surface steps on this phenomenon is studied. Very different time scales are predicted for Ag diffusion on Au(100) and Au(111), thus rendering very different regimes for the nucleation and growth of the related 2D phases. These observations are drawn from the application of a model free of any adjustable parameter.