68 resultados para Carbohydrates - Metabolism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human colonic microbiota imparts metabolic versatility on the colon, interacts at many levels in healthy intestinal and systemic metabolism, and plays protective roles in chronic disease and acute infection. Colonic bacterial metabolism is largely dependant on dietary residues from the upper gut. Carbohydrates, resistant to digestion, drive colonic bacterial fermentation and the resulting end products are considered beneficial. Many colonic species ferment proteins but the end products are not always beneficial and include toxic compounds, such as amines and phenols. Most components of a typical Western diet are heat processed. The Maillard reaction, involving food protein and sugar, is a complex network of reactions occurring during thermal processing. The resultant modified protein resists digestion in the small intestine but is available for colonic bacterial fermentation. Little is known about the fate of the modified protein but some Maillard reaction products (MRP) are biologically active by, e.g. altering bacterial population levels within the colon or, upon absorption, interacting with human disease mechanisms by induction of inflammatory responses. This review presents current understanding of the interactions between MRP and intestinal bacteria. Recent scientific advances offering the possibility of elucidating the consequences of microbe-MRP interactions within the gut are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to its low digestibility in the small intestine, a major fraction of the polyol isomalt reaches the colon. However, little is known about effects on the intestinal microflora. During two 4-week periods in a double-blind, placebo-controlled, cross-over design, nineteen healthy volunteers consumed a controlled basal diet enriched with either 30 g isomalt or 30 g sucrose daily. Stools were collected at the end of each test phase and various microbiological and luminal markers were analysed. Fermentation characteristics of isomalt were also investigated in vitro. Microbiological analyses of faecal samples indicated a shift of the gut flora towards an increase of bifidobacteria following consumption of the isomalt diet compared with the sucrose diet (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Metabolism by peptidases plays an important role in modulating the levels of biologically-active neuropeptides. The metabolism of the anti-inflammatory neuropeptide calcitonin gene-related peptide (GCRP), but not the pro-inflammatory neuropeptides substance P (SP) and neurokinin A (NKA) by components of the gingival crevicular fluid (GCF), could potentiate the inflammatory process in periodontitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-scale metabolic models promise important insights into cell function. However, the definition of pathways and functional network modules within these models, and in the biochemical literature in general, is often based on intuitive reasoning. Although mathematical methods have been proposed to identify modules, which are defined as groups of reactions with correlated fluxes, there is a need for experimental verification. We show here that multivariate statistical analysis of the NMR-derived intra- and extracellular metabolite profiles of single-gene deletion mutants in specific metabolic pathways in the yeast Saccharomyces cerevisiae identified outliers whose profiles were markedly different from those of the other mutants in their respective pathways. Application of flux coupling analysis to a metabolic model of this yeast showed that the deleted gene in an outlying mutant encoded an enzyme that was not part of the same functional network module as the other enzymes in the pathway. We suggest that metabolomic methods such as this, which do not require any knowledge of how a gene deletion might perturb the metabolic network, provide an empirical method for validating and ultimately refining the predicted network structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has become clear over the last 15-20 years that the immediate effect of a wide range of environmental stresses, and of infection, on vascular plants is to increase the formation of reactive oxygen species (ROS) and to impose oxidative stress on the cells. Since 1994, sufficient examples of similar responses in a broad range of marine macroalgae have been described to show that reactive oxygen metabolism also underlies the mechanisms by which seaweeds respond (and become resistant) to stress and infection. Desiccation, freezing, low temperatures, high light, ultraviolet radiation, and heavy metals all tend to result in a gradual and continued buildup of ROS because photosynthesis is inhibited and excess energy results in the formation of singlet oxygen. The response to other stresses (infection or oligosaccharides which signal that infection is occurring, mechanical stress, hyperosmotic shock) is quite different-a more rapid and intense, but short-lived production of ROS, described as an