27 resultados para Asymmetric synthesis.
Resumo:
A practical asymmetric synthesis of a highly substituted N-acylpyrrolidine on multi-kilogram scale is described. The key step in the construction of the three stereocenters is a [3+2] cycloaddition of methyl acrylate and an imino ester prepared from L-leucine t-butyl ester hydrochloride and 2-thiazolecarboxaldehyde. The cycloaddition features novel asymmetric catalysis via a complex of silver acetate and a cinchona alkaloid, particularly hydroquinine, with complete diastereomeric control and up to 87% enantiomeric control. The alkaloid serves as a ligand as well as a base for the formation of the azomethine ylide or 1,3-dipole. Experiments have shown that the hydroxyl group of hydroquinine is a critical element for the enantioselectivities observed. The cycloaddition methodology is also applicable to methylvinyl ketone, providing access to either alpha- or beta-epimers of 4-acetylpyrrolidine depending on the reaction conditions utilized. The synthesis also highlights an efficient N-acylation, selective O- versus N-methylation, and a unique ester reduction with NaBH4-MeOH catalyzed by NaB(OAc)(3)H that not only achieves excellent chemoselectivity but also avoids formation of the undesired but thermodynamically favored epimer. The highly functionalized target is synthesized in seven linear steps from L-leucine t-butyl ester hydrochloride with all three isolated intermediates being highly crystalline.
Resumo:
Chiral dienamides, derived from chiral amines and oxazolidinones, react with electron deficient dienophiles Eo give amino-cyclohexanes with good to excellent de's.
Resumo:
4-Amino-5-hexynoic acid is efficiently synthesised in eight steps (overall yield 10%) from commercially available (S)-glutamic acid. The key step was conversion of an aldehyde to an acetylene using diethylmethydiazophosphonate.
Resumo:
Amine transaminases offer an environmentally sustainable synthesis route for the production ofpure chiral amines. However, their catalytic efficiency towards bulky ketone substrates isgreatly limited by steric hindrance and therefore presents a great challenge for industrialsynthetic applications. Hereby we report an example of rational transaminase enzyme design tohelp alleviate these challenges. Starting from the Vibrio fluvialis amine transaminase that has nodetectable catalytic activity towards the bulky aromatic ketone 2-acetylbiphenyl, we employed arational design strategy combining in silico and in vitro studies to engineer the transaminaseenzyme with a minimal number of mutations, achieving an high catalytic activity and highenantioselectivity. We found that by introducing two mutations W57G/R415A detectableenzyme activity was achieved. The rationally designed best variant,W57F/R88H/V153S/K163F/I259M/R415A/V422A, showed an improvement in reaction rateby > 1716-fold towards the bulky ketone under study, producing the corresponding enantiomericpure (S)-amine (ee value of > 99%).
Resumo:
Chiral enamides5f-i were found to react with pyrylium ylides to give cycloadducts 6d-i in good yields with an excellent level of stereoselectivity. The chiral auxiliary was successfully removed on hydrogenolysis of compound 6f in continuous flow (H-Cube) resulting in the first asymmetric synthesis of complex amine 8.
Resumo:
Benzene cis-diol dehydrogenase and naphthalene cis-diol dehydrogenase enzymes, expressed in Pseudomonas putida wild-type and Escherichia coli recombinant strains, were used to investigate regioselectivity and stereoselectivity during dehydrogenations of arene, cyclic alkane and cyclic alkene vicinal cis-diols. The dehydrogenase-catalysed production of enantiopure cis-diols, α-ketols and catechols, using benzene cis-diol dehydrogenase and naphthalene cis-diol dehydrogenase, involved both kinetic resolution and asymmetric synthesis methods. The chemoenzymatic production and applications of catechol bioproducts in synthesis were investigated.
Resumo:
A series of enantiopure 2,2'-bipyridines have been synthesised from the corresponding cis-dihydrodiol metabolites of 2-chloroquinolines. Several of the resulting hydroxylated 2,2'-bipyridines were found to be useful chiral ligands for the asymmetric aminolysis of meso-epoxides leading to the formation of enantioenriched amino alcohols (-> 84%ee). N-oxide and N,N'-dioxide derivatives of these 2,2'-bipyridines, including separable atropisomers, have been synthesised and used as enantioselective organocatalysts in the asymmetric allylation of aldehydes to give allylic alcohols (-> 86%ee).
Resumo:
Decomposition of methyl 2-diazophenylacetate in the presence of silanes and a chiral dirhodium(11) catalyst results in Si-H insertion of the intermediate carbenoid with varying degrees of enantioselectivity. New chiral dirhodium(11) carboxylate catalysts were identified using solution phase parallel synthesis techniques. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Haigh, David; Birrell, Helen C.; Cantello, Barrie C. C.; Eggleston, Drake S.; Haltiwanger, R. Curtis; Hindley, Richard M.; Ramaswamy, Anantha; Stevens, Nicola C. Department of Medicinal Chemistry, SmithKline Beecham Pharmaceuticals, Essex, UK. Tetrahedron: Asymmetry (1999), 10(7), 1353-1367. Publisher: Elsevier Science Ltd., CODEN: TASYE3 ISSN: 0957-4166. Journal written in English. CAN 131:144537 AN 1999:369514 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract Boron-mediated asym. aldol reactions of 4-[2-(2-benzoxazolylmethylamino)ethoxy]benzaldehyde with 2-oxyethanoyloxazolidinones contg. electron withdrawing, chelating, and bulky alkoxy and aryloxy groups, gave variable yields of syn-aldol adducts in high diastereoisomeric excess. These adducts were dehydroxylated in a sequence which complements the traditional Evans asym. alkylation strategy. Cleavage of the auxiliary from these intermediates afforded antihyperglycemic (S)-(-)-2-oxy-3-arylpropanoic acids in excellent enantiomeric excess. The target compds. were ?-alkoxy-4-[2-[(benzoxazolyl)amino]ethoxy]benzenepropanoic acid derivs. The biol. activity of the compds. thus prepd. was not reported here.
Resumo:
The chemoenzymatic synthesis of a Lewis basic phosphine-phosphine oxide organocatalyst from a cis-dihydrodiol metabolite of bromobenzene proceeds via a palladium-catalysed carbon-phosphorus bond coupling and a novel room temperature Arbuzov [2,3]-sigmatropic rearrangement of an allylic diphenylphosphinite. Allylation of aromatic aldehydes were catalysed by the Lewis basic organocatalyst giving homoallylic alcohols in up to 57% ee. This compound also functioned as a ligand for rhodium-catalysed asymmetric hydrogenation of acetamidoacrylate giving reduction products with ee values of up to 84%.
Resumo:
A hydrolyzable dimethacrylate cross-linker, 2-methyl-2,4-pentanediol dimethacrylate (MPDMA), was synhesized by the reaction of 2-methyl-2,4-pentanediol and methacryloyl chloride in the presence of triethylamine. This cross-linker was used to prepare a neat cross-linker network and three cross-linked star polymer model networks (CSPMNs) of methyl methacrylate (MMA), as well as star-shaped polymers of MMA, by group transfer polymerization (GTP). Gel permeation chromatography (GPC) in tetrahydrofuran (THF) confirmed the narrow molecular weight distributions (MWDs) of the linear polymer precursors, and demonstrated the increase in molecular weight (MW) on each successive addition of cross-linker or monomer. Characterization of the star polymers by static light scattering (SLS) in THF showed that star polymers with MPDMA cores bear a relatively small number of arms, between 7 and 35. All star polymers and polymer networks containing the MPDMA cross-linker were hydrolyzed at room temperature in neat trifluoroacetic acid to yield lower-MW products.