311 resultados para suma
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este trabajo utilizamos los razonamientos que llevan a cabo doce alumnos de Secundaria durante la resolución de una tarea matemática para detectar los errores en que incurren y las dificultades que encuentran en su ejecución. Se les propone la tarea en un contexto de entrevista semiestructurada en la que se guía a los alumnos por el camino a seguir. Entre los datos que se obtienen, se encuentran los errores aparecidos en el desarrollo de la tarea. El análisis de dichos errores se ha hecho siguiendo las clasificaciones de Evans (González, 1998) y Radatz (1979), y se conecta dichos errores con dificultades específicas siguiendo la clasificación de Socas (1997). Se concluye este trabajo con algunas reflexiones que conside-ramos interesantes para profesionales de la enseñanza de las matemáticas.
Resumo:
Se estudia el proceso que va desde las acciones reales y efectivas de añadir y quitar hasta la construcción de las operaciones aritméticas de suma y resta por parte de los escolares de 3, 4 y 5 años. El esquema lógico-matemático subyacente es el de transformaciones. Para que se den estas operaciones deben presentarse simultáneamente dicho esquema y la cuantificación, siendo esa simultaneidad la que lleva a las relaciones numéricas. Teniendo en cuenta que el origen de las operaciones de suma y resta en el escolar está supeditado a las acciones de añadir y quitar que se desarrollan en un proceso de construcción mental de los esquemas lógicos-matemáticos de transformaciones de cantidades discretas, se propone un plan de actuación en el aula de educación infantil mediante un tratamiento sistemático de dichas operaciones.
Resumo:
En este trabajo realizamos una confrontación de tres diferentes modelos de enseñanza, durante la transición de la suma aritmética a la suma algebraica, en alumnos de primero de secundaria. Se utilizaron el modelo de enseñanza sintáctico, el modelo continuo de la recta numérica contextualizada y un modelo discreto consistente en una actividad lúdica denominado “la cucaracha”. Los resultados obtenidos muestran las tendencias cognitivas presentadas en cada modelo, por los alumnos del estudio.
Resumo:
A nivel educativo la noción de derivada se enseña en los cursos regulares de cálculo, pero por lo general, siempre en la forma en que fue definida por Cauchy, lo que implica un procedimiento se hace necesario hacer una factorización. Constantin Caratheodory establece una definición diferente. Esta definición presenta tres aspectos didácticos destacados: Nos muestra que el proceso de acercamiento de las pendientes de las secantes a la pendiente de la tangente es continuo y por tanto, la continuidad es esencial para la derivabilidad, la segunda parte se refiere a la facilidad de la derivación como un proceso de factorización repetitivo y no como cálculo de límites, así como simplicidad en la demostración de teoremas de linealidad, regla de la cadena, algebra de derivadas (suma, producto y cociente), aplicado a funciones polinómicas de valor real y la tercera es que a nivel escolar se generan alternativas en la enseñanza del cálculo a través de la implementación de conceptos nuevos, con el fin de evitar procedimientos tediosos que se tienen con las definiciones tradicionales como la de Cauchy.
Resumo:
Se busca dar solución a la pregunta ¿Qué procedimientos de resolución utilizan los estudiantes de quinto grado de educación básica primaria cuando resuelven problemas de isomorfismo de medidas? Para ello se realiza un análisis de los procedimientos mostrados por estudiantes de grado quinto al resolver un cuestionario de problemas de isomorfismo de medidas. Este análisis se realiza a partir de seis categorías construidas de acuerdo a los referentes teóricos de Vergnaud. En la relación cuaternaria se categorizaron los procedimientos en tres clases: el procedimiento funcional, escalar y de iteración de unidades. En la relación ternaria se categorizaron los procedimientos en multiplicación, división y suma repetida.
Resumo:
Analizamos el sentido estructural que estudiantes de entre 16 y18 años de edad ponen de manifiesto al trabajar con expresiones algebraicas, en el contexto de la simplificación de fracciones algebraicas que involucran las igualdades notables cuadrado de la suma, cuadrado de la diferencia, diferencia de cuadrados y propiedad distributiva/factor común. La identificación y clasificación de las estrategias empleadas por los estudiantes nos permite diferenciar tres modos de actuación que evidencian diferentes niveles de sentido estructural. Este análisis nos permite distinguir un amplio espectro de niveles de sentido estructural y avanzar en la comprensión del constructo sentido estructural que informa sobre las habilidades necesarias para hacer un uso eficiente de las técnicas algebraicas en tareas escolares.
Resumo:
Las deducciones que a lo largo de la historia se han realizado en torno al teorema de Pitágoras pueden ayudar en el proceso de enseñanza-aprendizaje que realmente necesitan nuestros estudiantes, con el fin de que comprendan los conceptos a través de la reconstrucción de un método, de tal manera que no mecanicen reglas sino mas bien se logre aumentar y relacionar los conceptos adquiridos previamente de tal manera que se logre una mejor comprensión. Usaremos el enfoque histórico como una propuesta metodológica que actué como motivación para el alumno, ya que por medio de ella el estudiante descubrirá como generar los conceptos a través de métodos que aprenderá en clase. Discutiremos los conceptos y propiedades fundamentales de magnitudes, tales como la longitud y el área de figuras geométricas dadas en una y dos dimensiones, repasaremos los conceptos del producto notable del cuadrado de la suma de dos cantidades desde el punto de vista geométrico lo cual nos ayudara a inducir la demostración del teorema de Pitágoras a través de triángulos rectángulos notables e isósceles rectángulos, tomando en consideración el área de los cuadrados que se encuentra en los lados de dichos triángulos. Esto nos ayudara a recalcar la generalización del teorema de Pitágoras a través de figuras regulares. Las deducciones se harán pasando de la rama de la matemática llamada Algebra, conjugándola o dándole soporte con otra que muestra la forma estructural, como lo es la Geometría.
Resumo:
Las deducciones que a lo largo de la historia se han realizado en torno al Teorema de Pitágoras pueden ayudar en el proceso de enseñanza-aprendizaje que realmente necesitan nuestros estudiantes, con el fin de que comprendan los conceptos a través de la reconstrucción de un método, de tal manera que no mecanicen reglas sino mas bien se logre aumentar y relacionar los conceptos adquiridos previamente de tal manera que se logre una mejor comprensión. Usaremos el enfoque histórico como una propuesta metodológica que actué como motivación para el alumno, ya que por medio de ella el estudiante descubrirá como generar los conceptos a través de métodos que aprenderá en clase. Discutiremos los conceptos y propiedades fundamentales de magnitudes, tales como la longitud y el área de figuras geométricas dadas en una y dos dimensiones, repasaremos los conceptos del producto notable del cuadrado de la suma de dos cantidades desde el punto de vista geométrico lo cual nos ayudara a inducir la demostración del Teorema de Pitágoras a través de triángulos rectángulos notables e isósceles rectángulos, tomando en consideración el área de los cuadrados que se encuentra en los lados de dichos triángulos. Esto nos ayudara a recalcar la generalización del Teorema de Pitágoras a través de figuras regulares. Las deducciones se harán pasando de la rama de la matemática llamada Álgebra, conjugándola o dándole soporte con otra que muestra la forma estructural, como lo es la Geometría.
Resumo:
En este documento indagamos sobre algunos aspectos del conocimiento didáctico que un grupo de maestros de primaria en formación inicial ponen en juego al redactar un texto cuyo propósito es iniciar a los escolares de primaria en la noción de fracción. Usamos algunas de las categorías del análisis didáctico para analizar las producciones de los futuros maestros. Los resultados destacan los conocimientos que los participantes seleccionan, como el concepto de numerador y denominador, la suma y resta de fracciones o el concepto de unidad, y el modo en que los introducen en sus propuestas.
Resumo:
Se pretende crear un marco de resolución de problemas que sea motivador para los alumnos del último año de Bachillerato o del primer año de estudios en la Universidad, y para ello se presentan cuatro problemas reales, cuya solución requiere establecer el concepto de integral definida, y uno histórico, que fue propuesto y resuelto por Arquímedes. Asimismo, en el desarrollo del curso se verá la importancia del uso de herramientas didácticas, tales como el generador de volúmenes de revolución, que se construirá en el propio curso, y el ordenador, cuyo uso será absolutamente necesario para resolver los problemas planteados. En suma, además de promover adaptaciones curriculares adecuadas, se fijan estos tres objetivos fundamentales: Cómo se crea un marco de resolución de problemas y cómo se integran herramientas didácticas apropiadas.
Resumo:
En este artículo presentamos los resultados cuantitativos sobre estados y cambios en el aprendizaje de la validación matemática (para los contenidos función de proporcionalidad directa y función cuadrática) en relación con diversas modalidades de enseñanza. En ellas se promovieron diferentes interacciones en el aula: interacciones entre experto y aprendiz (E-A) e interacciones en un grupo de aprendices (G-A). Los datos recabados y procesados, referidos al estado y al cambio producido en el aprendizaje de la validación, son individuales. Esto se ha llevado a cabo en la asignatura Matemática de nivel pre-universitario del Curso de Aprestamiento Universitario (CAU) en la Universidad Nacional de General Sarmiento (UNGS), de la provincia de Buenos Aires.
Resumo:
A menudo se piensa que en las Matemáticas no 69 hay lugar para el ensayo y el error, propagando la idea de que gran parte de la labor del matemático es tener la ocurrencia apropiada. En este artículo mostramos dos problemas que, aunque aparentemente deberían resolverse usando la misma idea, son resueltos sin justificación alguna en los libros de texto utilizando ideas diferentes. Además, presentamos otra situación mucho más próxima al estudiante con la misma dificultad subyacente y que sirve para explicar dicha dificultad de un modo más adecuado al nivel del alumno.
Resumo:
Ya vimos en anteriores artículos que cuando aparecen en pantalla cálculos aritméticos no es inusual la presencia de errores. Lo volveremos a constatar, pero en esta ocasión fijaremos la atención, además, en el sentido que dichos cálculos tienen dentro del guión. Quizás esa injustificable dejadez numérica se deba en ocasiones a que su aparición no responde al interés por el resultado en sí, sino a que se usan como medio expresivo.
Resumo:
Generalmente, los estudiantes de bachillerato y universitarios tienen dificultades para comprender los conceptos más elementales de probabilidad y estadística. La presentación de conceptos abstractos de una forma visual y dinámica puede ayudar a comprenderlos mejor. La simulación de experimentos aleatorios ayudará a conseguirlo. Presentamos a continuación algunas de las actividades preparadas para ello.
Resumo:
En estadística y probabilidad encontramos diferentes paradojas de solución adsequible a los estudiantes que permiten organizar actividades didácticas en la enseñanza y aprendizaje. En este trabajo describimos la paradoja de Simpson, que produce múltiples errores en la interpretación de la asociación y correlación. Describimos la paradoja y su historia, algunas soluciones y ejemplos. También analizamos los contenidos estadísticos trabajados en su solución, así como los posibles razonamientos erróneos de los estudiantes.