41 resultados para modelo de cálculo
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
La hoja de cálculo constituye un potente entorno para la experimentación en clase de estadística, comparable al laboratorio en la de ciencias experimentales. Entre sus múltiples aplicaciones se encuentra la de proporcionar un medio para la comprobación experimental de resultados teóricos. Para ilustrarlo, proponemos un modelo para verificar el teorema de Stein relativo a la estimación óptima de un conjunto de k > 2 medias. El carácter paradójico de este resultado lo convierte en un ejemplo ideal para este tipo de simulaciones.
Resumo:
En un modelo cognitivo, la estructura cognitiva asociada con un determinado concepto matemático incluye todas las imágenes mentales, representaciones visuales, experiencias e impresiones, así como propiedades y procesos asociados (que llamaremos concepto-imagen, siguiendo a Vinner, Tall y Dreyfus y “estructuras elaboradas” o “esquemas” según los científicos cognitivos) y ha ido emergiendo con el tiempo mediante experiencias de todos los tipos, cambiando a medida que el individuo recibe nuevos estímulos y madura e influyéndose por desviaciones, aparentemente triviales, de un entendimiento válido. A medida que este concepto-imagen se desarrolla, no resulta necesario que sea coherente en cada momento. Así, resulta posible que visiones conflictivas sean evocadas en tiempos diferentes, sin que el individuo sea consciente del conflicto, hasta que son evocadas simultáneamente. Su coincidencia o no con lo que podríamos llamar concepto-definición (la formulación convencional lingüística que demarca precisamente las fronteras de aplicación del concepto) es fuente de muchas disfunciones en el aprendizaje.
Resumo:
Este trabajo se propone compartir y discutir el resultado de una investigación en la que se utilizó la modelización del cálculo del volumen del ventrículo izquierdo del corazón como instrumento en el proceso de enseñanza-aprendizaje de las matemáticas para enriquecer y mejorar nuestra práctica cotidiana, realizada con alumnos que cursan el nivel medio. El modelo proviene de aproximaciones realizadas para poder entender mejor la naturaleza y severidad de las afecciones cardíacas y mostrar con una visión simplificada aspectos de diagnóstico médico. (Pichel y otros, 1988). Otorgar significatividad a conceptos como área y volumen. El proceso de modelización llevado a cabo en el aula siguió la secuencia planteada por Sallett Biembengut y Hein (1999). Esto dio origen a la búsqueda de información; a partir del análisis de la misma y de la elección de una figura se elaboraron actividades con el objeto de modelizarlo a través de alguna cuádrica. Esta experiencia se constituyó en un medio eficaz para la motivación ya que los alumnos optaron por un desarrollo activo, demostrando gran interés al realizar las actividades dado que trabajaron con situaciones reales, buscando respuestas en la matemática a problemas concretos de otras ciencias.
Resumo:
En la formación de estudiantes para docentes en matemáticas del proyecto curricular licenciatura en educación básica con énfasis en matemáticas (LEBEM), es importante para el desarrollo de nuestro quehacer profesional considerar aspectos relevantes que influyen en los procesos de enseñanza-aprendizaje, como lo son: las estructuras del pensamiento (en el sentido de los conocimientos previos de los estudiantes, sus dificultades, razonamientos y demás), el contexto y las situaciones de enseñanza que se proponen. Lo anterior nos llevó a reflexionar acerca de la manera en que tenemos en cuenta estos tres aspectos en el momento de diseñar un ambiente de aprendizaje, de manera que las construcciones realizadas por los estudiantes les sean significativas, lo cual implica que ellos puedan establecer conexiones con la utilidad que tiene el conocimiento en la resolución de problemas y la comprensión de fenómenos de la vida cotidiana.
Resumo:
En este artículo presento algunos aspectos relativos a mi experiencia de uso de la calculadora como elemento didáctico en las clases de cálculo; particularmente, registro algunos pasos que realicé antes de utilizar la calculadora en clase, propongo tres preguntas que atraviesan toda la experiencia, muestro tres ejemplos que ilustran la manera como utilicé la calculadora y discuto algunos beneficios y riesgos que identifiqué al usar este instrumento. Esta experiencia logró cuestionar mi conocimiento matemático-didáctico, mi labor docente y me enfrentó a cuestiones de investigación en Educación Matemática que no había considerado antes.
Resumo:
Esta investigación presenta la puesta en práctica de una propuesta pedagógica para apoyar la enseñanza del Cálculo mediante la resolución de problemas a nivel preuniversitarioen Costa Rica. El proyecto tiene su origen en las dificultades que presentan los estudiantes en la comprensión de conceptos básicos de Cálculo, específicamente el de límite y derivada. Esta experiencia se fundamentó en la elaboración de una “situación problema” que provocó un conflicto intelectual en los estudiantes, mientras que el docente fungió como mediador y aprovechó los descubrimientos hechos por los estudiantes para fundamentar teóricamente los diferentes conceptos luego de la aplicación de la propuesta. Los resultados obtenidos son muy positivos y justifican la necesidad de un cambio en las estrategias metodologías utilizadas para enseñar el Cálculo. Sin embargo, es necesario un acercamiento de los docentes hacia la Teoría de Resolución de problemas para aplicar con éxito este tipo de actividades.
Resumo:
La enseñanza y aprendizaje de temas matemáticos como la proporcionalidad directa usualmente se realiza modelando situaciones “reales” y “cotidianas”. Los profesores de matemáticas asumimos que tales situaciones se comportan en efecto de forma proporcional, pero en la realidad su comportamiento es diferente. Ello nos lleva a la tarea de identificar en la cotidianidad de los estudiantes, situaciones que se dejen modelar a través de funciones lineales, tarea difícilmente realizable, pero altamente formativa.
Resumo:
Esta investigación que forma parte de las tesis de maestría, se realiza en México con estudiantes de secundaria, de edades 14-15 años. El objetivo es dar a conocer las dificultades; que a partir de un análisis comparativo, tienen los alumnos al tratar de construir una expresión algebraica de segundo orden que defina el enésimo término al usar sucesiones figurativas. Para ello, se ha estado haciendo uso de dos de sus cuatro componentes del Modelo Teórico Local [MTL] (Filloy, 1999): modelo de enseñanza y de procesos cognoscitivos. Se realiza una evaluación diagnóstica, se clasifica a la población según los distintos perfiles: alto, medio y bajo rendimiento, para observar en entrevista clínica videograbada y elaborar un reporte de observaciones acorde al esquema de desarrollo de experimentación perteneciente al MTL.
Resumo:
La matemática es un idioma como varios autores han mencionado en diferentes trabajos científicos. En este artículo se analizan y comparan cuatro componentes del lenguaje y la matemática. Por otra parte, la matemática no es exactamente como otros idiomas. De hecho, la matemática parece ser más precisa y más limitada que los otros idiomas y esto tiene varias consecuencias en lo que se refiere a la enseñanza de dicha disciplina. En este artículo comentaremos nuestras experiencias, desarrolladas en Argentina, Alemania y Uruguay, teniendo en cuenta este enfoque de la enseñanza de la matemática como una extensión de la enseñanza de la lengua, y veremos cómo este enfoque ayudó a los estudiantes de los cursos de Cálculo, en diferentes formas.
Resumo:
A ênfase algébrica dada ao longo do tempo nos cursos de Cálculo Diferencial e Integral não oportunizou que tratamentos gráficos e numéricos fossem privilegiados, visto a ausência de softwares que possibilitassem uma abordagem diferenciada aos conceitos inerentes a esta disciplina (Richit, 2010, Guimarães, 2001). Contudo, iniciativas no mundo inteiro têm dedicado esforços e desenvolvido softwares que possibilitam explorações qualitativamente diferentes para conceitos de Cálculo a partir de representações gráficas, numéricas ou algébricas envolvendo visualização, a simulação, o aprofundamento do pensamento matemático, conjecturas e validações, etc. Deste modo, a incorporação das tecnologias digitais na aula de Cálculo remove um pouco o fardo da manipulação algébrica, possibilitando a transição entre a ação física (interação do estudante com a tecnologia) e a representação matemática de um conceito. Assim, a proposta de oficina aqui apresentada objetiva explorar conceitos de Cálculo (Funções, Limites, Derivadas e Integrais) em uma perspectiva de investigação com o software GeoGebra.
Resumo:
La estrategia didáctica es uno de los resultados de la investigación que realiza el grupo de matemática educativa de la Universidad de Camagüey. Tiene como objetivo diseñar una estrategia didáctica para favorecer la formación y el desarrollo de la competencia organizar e interpretar el conocimiento matemático en los estudiantes de la carrera Ingeniería Informática de la Universidad de Camagüey. La misma centra sus resultados científicos fundamentales en un modelo teórico para la formación y desarrollo de la competencia organizar e interpretar el conocimiento matemático. En esta estrategia didáctica para favorecer la formación y el desarrollo de la competencia organizar e interpretar el conocimiento matemático en los estudiantes de la carrera Ingeniería Informática presenta un set de instrumentos e indicadores para evaluar la formación y el desarrollo de la competencia organizar e interpretar el conocimiento matemático. En el desarrollo de la investigación se utilizaron diferentes métodos, y la implementación se realizó en dos grupos de esta facultad con resultados satisfactorios. Con esta investigación se contribuye al Perfeccionamiento de la Educación Superior.
Resumo:
Mostraremos a continuación la posibilidad de generar modelos matemáticos simples a partir de la explicación de un hecho físico. El marco teórico de partida es el de la explicación científica con la estructura del modelo nomológico deductivo. El uso de modelos matemáticos en este marco genera herramientas didácticas de distinto tipo, en este articulo desarrollamos brevemente el diseño de proyectos de investigación para los alumnos. El docente puede generar y luego utilizar estos proyectos de distintos modos, por ejemplo, como actividad de cierre de un curso, o también para generar una discontinuidad en el transcurso de la cursada, como actividad en paralelo que ocupe algún momento de las clases, etc.
Resumo:
La introducción de nuevos planes de estudio en Francia (2002), muestra la importancia que tiene actualmente la enseñanza y aprendizaje de la modelación, principalmente en disciplinas científicas como Matemáticas y Física. En los programas oficiales y libros del último año de preparatoria se observa la introducción de la noción de ecuación diferencial como objeto de estudio pero también como herramienta para modelar diversas situaciones físicas. En esta investigación, estableceremos un modelo del proceso de modelación que constituya una referencia para posteriormente caracterizarlo, desde un punto de vista antropológico, en dos instituciones diferentes: la clase de matemáticas y la clase de física.
Resumo:
La teoría de instrucción matemática significativa basada en el modelo ontológico -semiótico de la cognición matemática denominado Teoría de las Funciones Semióticas (TFS ) proporciona un marco unificado para el estudio de las diversas formas de conocimiento matemático y sus respectivas interacciones en el seno de los sistemas didácticos (Godino, 1998 ). Presentamos un desarrollo de esta teoría consistente en la descomposición de un objeto, para nuestro modelo, la Continuidad, en unidades para identificar entidades y las funciones semióticas que se establecen, en el proceso de enseñanza y aprendizaje en una institución escolar, implementando un ambiente de tecnología digital (calculadora graficadora TI-92 Plus y/o Voyage 200).
Resumo:
En éste artículo se presenta una propuesta para la enseñanza de los Teoremas Fundamentales del Cálculo por medio de la utilización del software Geogebra, éste software permite la visualización de cada uno de los teoremas fundamentales del cálculo, a través de la interpretación geométrica de la integral como función de área y la interpretación de la derivada como función de pendientes, posteriormente se relacionan los procesos inversos de integración y derivación.