15 resultados para Volumen
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Los 5 poliedros regulares han sido modelo de la ciencia para los griegos y modelo de la astronomía para Kepler. Sin embargo, a pesar de su gran valor epistemológico su estudio es normalmente muy superficial en los cursos de Secundaria. Hace 20 años me formulé esta sencilla pregunta: ¿Cómo podemos calcular el volumen del icosaedro y del dodecaedro regular, conociendo solamente la medida de la arista? Esta pregunta dio lugar a una fascinante investigación, que comenzó en la búsqueda de diferentes medios para construir poliedros (se puede ver en la foto de la derecha un modelo a usar durante el taller) , un trabajo muy interesante con el álgebra de los irracionales cuadráticos, el uso de la trigonometría y el descubrimiento de varias y sorpresivas propiedades geométricas relacionadas algunas con el número áureo. Durante el curso los participantes aprenderán a construir, con regla y compás el pentágono regular(comenzando con su lado) , de la forma más simple y exacta, con su justificación paso a paso. Esto es imprescindible ya que en ambos el icosa y el dode hay numerosos pentágonos regulares. Este curso o taller es tan sólo un pequeño paseo en el increíble mundo de los 5 poliedros regulares, un mundo lleno de tesoros matemáticos, un mundo que espera a ser explorado y descubierto.
Resumo:
En la primera parte del artículo el autor muestra que las fórmulas de volumen del prisma, pirámide y esfera no se justifican adecuadamente a los estudiantes. Esta afirmación la sustenta a partir de un análisis sucinto de lo que aparece en los textos que tradicionalmente dominan la enseñanza y de su experiencia como docente. En la segunda parte da a conocer una propuesta para construir las fórmulas del volumen de un prisma y una pirámide cualquiera; del área del círculo y la semiesfera y con base en esta última, obtener la del volumen de la esfera. Termina con la descripción de las ventajas de la estrategia.
Resumo:
La comprensión del conocimiento matemático constituye un objeto de investigación de interés creciente en Educación Matemática. La elevada complejidad de su estudio y el considerable volumen de conocimientos sobre el tema disponible en la actualidad, justifican la pertinencia de trabajos como el que aquí se presenta, que tiene como principales propósitos delimitar, a través de la reflexión sobre distintas cuestiones abiertas fundamentales, algunos de los principales problemas actuales en torno a la investigación sobre comprensión en matemáticas y trazar, en base a ellos, posibles vías de actuación operativas.
Resumo:
A partir de la historia de la matemática se pueden diseñar actividades que favorezcan la formación humanística y matemática de nuestros estudiantes. En este caso se presentan algunos acercamientos de la civilización China a la noción de aproximación, y con base en estos se muestra parte de una actividad que busca fortalecer la comprensión de esta noción básica del cálculo. Este trabajo es un producto parcial del grupo de estudio en Historia de la Matemática del Departamento de Matemáticas del Colegio Gimnasio Moderno. En este momento el grupo centra su atención en el estudio de desarrollos históricos que estén relacionados con nociones básicas del Cálculo como aproximación, variación, optimización y predicción; así como en el diseño de actividades que favorezcan la comprensión de estas nociones. La razón por la cual nos interesa el Cálculo, es porque es una de las áreas de la matemática que mayor dificultad presenta a los estudiantes, ya que sus conceptos se basan en nociones de inexactitud y cambio que evidentemente chocan con la concepción tradicional de la matemática como una ciencia exacta. Por ejemplo, la comprensión del concepto de límite en un sentido riguroso es extremadamente difícil y casi imposible para los estudiantes debido a que la noción en la que se sustenta, la aproximación, produce tal incertidumbre que los mismos profesores la han expulsado de aquella variedad de nociones básicas que deben ser enseñadas en la escuela. Pero además, la estructura conceptual de ésta noción es tan compleja, que requiere de un tiempo prolongado y del uso de diferentes vías didácticas para ser plenamente comprendida (García et al., 2002). Haciendo un estudio de los desarrollos matemáticos de la civilización China nos encontramos con que en ella se establecieron algunos procedimientos de aproximación para calcular áreas de regiones curvilíneas, así como un método para aproximar tanto como se quiera la raíz cuadrada de un número; también obtuvieron la fórmula del volumen de la esfera por un método que antecede a la técnica de Cavalieri en doce siglos aproximadamente. Este taller pretende por una parte, mostrar los acercamientos de la civilización China a algunas nociones básicas del cálculo, específicamente la aproximación y la variación; así como hacer evidente la presencia de procesos infinitos en algunos desarrollos matemáticos de esta civilización. Por otra parte, busca presentar algunas actividades diseñadas desde una perspectiva histórica, es decir, un diseño que resalta la dimensión humana del conocimiento matemático, sus conexiones con otros ámbitos de la cultura, el contexto en el que nace y evoluciona, y por supuesto, que busca fortalecer la formación matemática de nuestros estudiantes. En la primera sesión, mostraremos los acercamientos a las nociones básicas de aproximación y/o variación de la civilización China. En la segunda sesión presentaremos algunas actividades inspiradas en los desarrollos de las civilizaciones anteriormente mencionadas.
Resumo:
En ocasión de la realización de la VI Reunión de Didáctica de la Matemática del Cono Sur realizada en Buenos Aires, Argentina, en Julio de 2002, el mismo grupo de docentes que escribimos el artículo "Poliedros en el aula" que se publicó en el volumen 49 de esta revista, presentamos en un taller la ampliación y continuación de la experiencia allí relatada, al nivel terciario.
Resumo:
A partir de este trabajo se busca establecer una relación entre el análisis epistemológico de la matemática y los procesos de enseñanza-aprendizaje de la geometría, centrados en un estudio de los problemas que históricamente han fundamentado la integral, desde la postura de resolución de problemas, las ventajas e implicaciones para el trabajo en el aula, el docente y el estudiante. Se hace una presentación del trabajo realizado geométrica y analíticamente para obtener las fórmulas del cálculo de área y volumen de algunas figuras, encaminado a un estudio sobre la importancia del tratamiento de situaciones problema para la enseñanza de la geometría, partiendo de los aportes que desde las situaciones históricamente abordadas se pueden realizar al conocimiento del profesor y los aspectos que puede tener en cuenta para orientar la enseñanza.
Resumo:
El INEE es el organismo del Ministerio de Educación, Cultura y Deporte encargado de la evaluación del sistema educativo español. Entre los estudios que coordina se encuentra TEDS-M, el primer estudio comparativo a nivel internacional a gran escala sobre educación superior. Su objetivo ha sido evaluar la formación inicial del profesorado de Matemáticas en educación primaria y secundaria obligatoria. Analiza las políticas educativas y el currículo de formación del profesorado de matemáticas, además del conocimiento en matemáticas y didáctica de las matemáticas de los futuros maestros. Participaron 17 países, entre ellos España, que evaluó a más de mil estudiantes de último curso de magisterio en educación primaria, de 48 instituciones. El presente artículo resume las principales características y conclusiones del estudio cuyo informe de resultados se publicó en 2012, seguido de un segundo volumen con análisis secundarios en 2013.
Resumo:
Esta es una propuesta didáctica que consta de una serie de actividades relacionadas con la representación gráfica de ciertas funciones y su vinculación con una representación en un contexto físico o icónico (dibujo de un recipiente). Las actividades son de dos tipos: Dadas las formas de los recipientes, bosquejar las gráficas correspondientes, teniendo en cuenta que la variable independiente es la altura del líquido y la variable dependiente es el área de la superficie del líquido (o bien el volumen del líquido dentro del recipiente); dadas las gráficas del área de la superficie del líquido versus altura, bosquejar los posibles recipientes correspondientes. Ambas actividades son diseñadas para propiciar el cambio de un sistema de representación a otro (Janvier, 1987; Duval, 1992, 1999; Hitt, 1992).
Resumo:
En los problemas clásicos, la proporcionalidad aparece como una relación exacta en el sentido que compara magnitudes bien determinadas y con medidas que se suponen conocidas exactamente. Es la manera como opera la llamada "regla de tres" de la escuela elemental. Así, en el movimiento uniforme, el espacio recorrido durante el tiempo fijo, es proporcional a la velocidad y para una velocidad determinada, es proporcional al tiempo. También e precio de una determinada mercadería es proporcional a la medida de la misma (longitud, si se trata de telas o alambres; peso, si se trata de azúcar patatas; volumen, si de líquidos como el vino o aceite). En las clases de nivel medio conviene poner abundantes ejemplos de magnitudes proporcionales, como las que acabamos de mencionar y otros de los que no lo son. En general, es conveniente hacer la representación gráfica de una magnitud en función de la otra, para ver si es o no una recta.
Resumo:
Muchos son los líquidos (aceite, vinagre, leche, vino, licor...) y otros productos (sal, especies, arroz...) que son descritos en las recetas de cocina en relación al volumen. A veces se expresan dichos volúmenes en unidades precisas (litros, centilitros, mililitros...) pero en muchas ocasiones se presuponen las capacidades de determinados contenedores (cucharas, tazas, vasos...) para “aclarar” los volúmenes implicados. Cuando le recomiendan “ponga dos tazas de arroz por persona”, si usted no es del club de los iniciados, su estupor puede ser mayúsculo pues al abrir el armario de la cocina encontrará tazas de lo más diverso dispuestas a ser “la taza” recomendada.
Resumo:
El pasado 15 de abril se cumplían 300 años del nacimiento de uno de los cuatro matemáticos más geniales de la historia, Leonhard Euler. Para mí, los otros tres, y que cada cual elija su orden, son Arquímedes, Newton y Gauss. Si la calificación la hiciésemos atendiendo a la cantidad de los trabajos de primer orden realizados por cada uno de ellos, sin duda Euler ocuparía el primer lugar. A lo largo de su extensa vida Euler produjo más de ochocientos libros y miles de artículos y trabajos. Sus obras completas Opera Omnia ocupan más de 80 volúmenes. Sin lugar a dudas es el matemático más prolífico de la Historia. Pero, con ser importante la cantidad de trabajos, el aprecio de los matemáticos contemporáneos y posteriores a él se debe más a la riqueza, originalidad, belleza y genial agudeza de su obra que a su volumen.
Resumo:
En este trabajo nos proponemos abordar un problema clásico: la división de un segmento en media y extrema razón. Nuestro interés se centra en ilustrar, con un ejemplo sencillo, los sucesivos pasos a la hora de interpretar una magnitud: primero como una longitud, un área o un volumen; después como un segmento; y, por último, como un número. Evolución que refleja el proceso de creación de la geometría analítica. Por otro lado, estos tres periodos coinciden con las tres fases por las que pasa una disciplina matemática: ingenua, formal (en la que se perfecciona el cálculo simbólico) y una fase crítica (en la que se revisan los fundamentos).
Resumo:
En este articulo ofrecemos una panorámica de los contenidos de los programas oficiales de matemáticas en la segunda enseñanza española de este siglo, así como las formas en las que un conjunto de libros de texto han presentado a los alumnos ciertos temas que hemos seleccionado: longitud de la circunferencia, área del circulo, área de la superficie esférica, volumen de la esfera, números negativos y noción de limite.
Resumo:
En este articulo se incluyen dos actividades que se realizaron en clase al impartir el tema de integración, en ellas se expone la forma mediante la cual dos matemáticos excepcionales, Arquímedes y Fermat, calcularon el valor exacto del área y del volumen de determinadas superficies y sólidos.
Resumo:
La importante revista inglesa Nature, en su Volumen 340 del mes de Julio de 1989, publica interesantes resultados referentes a una encuesta realizada simultáneamente en los Estados Unidos de Norteamérica y en Inglaterra, para averiguar el concepto que el hombre común tiene de la ciencia y de sus métodos, así como del interés por la misma y del grado de conocimientos referentes a algunas de sus realizaciones. La encuesta se hizo sobre una muestra de unos dos mil norteamericanos y otros tantos ingleses, tomados al azar entre mayores de 18 años.