9 resultados para Tradición Clásica

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La siguiente es una propuesta didáctica para la enseñanza- aprendizaje de la probabilidad clásica en el ámbito escolar. El trabajo se desarrolló con estudiantes de grado octavo, haciendo uso de un problema clásico de la probabilidad, propuesto en el siglo XVII por el Príncipe de Toscana a Galileo Galilei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se muestra la construcción de algunas cónicas por medio del software de geometría dinámica llamado RyC. Una de las principales ventajas de esta herramienta es que permite animar las construcciones geométricas conservando sus propiedades básicas, es decir, que le agrega movimiento a la clásica geometría euclidiana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La utilización de una herramienta nueva, de cualquier tipo que sea, necesita de una reflexión sobre lo que hacemos, muchas veces cambia nuestro modo de trabajar (actitud) y hace surgir problemas sobre las verdades que teníamos. En matemática los conocimientos utilizados pueden ser diferentes: comparar una construcción geométrica con regla y compás o con regla y escuadra (mecánica) o solamente con compás. En este curso se explora de manera activa el software Cabri II. En una primera etapa se realiza la construcción de triángulos -sus elementos secundarios- y circunferencias inscritas y circunscritas así como exploraciones de simetría. En una segunda etapa se elaboran macro construcciones o construcciones que podemos grabar, para luego reutilizar en figuras más complejas, sin necesidad de rehacerlas. A través de la exploración ya descrita se reflexiona sobre el aporte de esta herramienta al quehacer pedagógico y/o científico. El uso del software es muy cercano a la forma de pensar en la geometría clásica, lo que permite a los estudiantes acercarse a esta disciplina y hacer conjeturas. Corresponde advertir que, como Cabri II no es un software de dibujo ni de demostración sino que está basado en un ambiente numérico, hay errores de aproximación. aunque leves. Se inicia el curso explicando brevemente el funcionamiento del software Cabri II para pasar a realizar actividades de construcción y comprobación de relaciones geométricas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de este artículo es presentar varias pruebas visuales sobre la irracionalidad de raíz de 2, las cuales no son muy conocidas comparadas con otras pruebas, como por ejemplo, las demostraciones del teorema de Pitágoras. Además, esas demostraciones pueden ser útiles como una alternativa a la clásica demostración griega y de esta forma se intentará llamar la atención de los alumnos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Demos un gran salto en el tiempo. En números anteriores narramos los avatares del problema isoperimétrico en Grecia y en los países islámicos medievales, respectivamente. Retomemos el enfoque dado por Pappus con el que llegó a la conclusión de que, para un área dada, el perímetro del hexágono regular es menor que el del cuadrado o el del triángulo equilátero, por lo que si el problema se plantea sobre una teselación regular del plano, un trozo finito del teselado regular hecho con hexágonos regulares es el que requiere menor perímetro. Bueno, aún no podemos detenernos porque hemos de hacer la demostración de la proposición de Pappus en 3D. El conocido MacLaurin (1698-1746), profesor de Aberdeen y Edimburgo, utilizó el método que a continuación presentamos. Lo hizo para poner de manifiesto la capacidad de la Geometría clásica como fuente de investigación en cualquier momento (conviene recordar que MacLaurin estaba centrado en analizar las posibilidades de los métodos infinitesimales que en su época emergían, lo que demostró sobradamente con su Treatise of Fluxions).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hubiéramos deseado enfocar este artículo desde otra perspectiva. Su gestación había deambulado por otros derroteros. Es cierto que pensábamos escribir sobre el tremendo paréntesis que la historiografía clásica impone, en el campo de la matemáticas, al final de la edad media hispana y al llamado renacimiento, también en su versión peninsular. De la matemática «árabe» ya habíamos hablado en artículos anteriores, pero, una vez más, los medios de comunicación pretenden adiestrarnos en el lenguaje del odio, presentándolo bajo el prisma del choque cultural. Porque, una vez más, los paladines de la justicia y la democracia andan bombardeando un país musulmán respondiendo con iniquidad a la iniquidad. Razones más que suficientes, en nuestro caso, para cultivar la admiración, para revisar nuestra cultura a la luz de sus aportaciones. Las de «ellos», que fueron las nuestras, porque formábamos parte integrante de «esa» comunidad. Máxime cuando uno lee con dolor alegatos tan detestables –por racistas– y tan tendenciosos –por intencionadamente desinformados– como el de la señora Fallaci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este articulo presentamos una investigación sobre el razonamiento probabilístico de estudiantes recién ingresados en la universidad. El trabajo se enmarca teóricamente en el paradigma de heurísticos y sesgos (Kahneman, Slavic y Tversky, i982) de tradición muy fecunda en el campo del pensamiento probabilístico. Además estudiamos los efectos de la enseñanza estadística que recibieron estos estudiantes en la enseñanza secundaria. Consideramos que de los resultados de la investigación se derivan ideas muy útiles para establecer un nuevo modelo de enseñanza de las probabilidades en la educación secundaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La sección áurea puede ser un tema al que hacer referencia en distintos momentos y etapas del currículo escolar. Es idóneo para mostrar la relación entre las matemáticas y otras asignaturas del ámbito de humanidades y, de esta forma, contribuir a destruir el muro que tradicionalmente separa a los alumnos en «de letras» y «de ciencias». En este articulo, estudiando el ritmo de intensidad de la poesía clásica española, descubrimos cómo en los metros fundamentales y más utilizados por los autores de todos los tiempos podemos encontrar bien razones áureas, bien otras no menos bellas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este artículo se analiza la posición que ocupa Laplace en el desarrollo de la teoría clásica de la probabilidad. Se hace en el marco de los 200 años de la publicación del "Essai philosophique sur les probabilités". El artículo se divide en las siguientes secciones: en la primera se introducen algunas de las características de las matemáticas del periodo. En la segunda, se presentan algunos de los desarrollos fundamentales en la teoría de la probabilidad alcanzados durante los siglos XVII y XVIII. Finalmente, presentamos algunas de las principales contribuciones de Laplace. En general, se considera que con Laplace la teoría clásica de la probabilidad adquiere su forma definitiva.