36 resultados para Suporte geométrico multifractal
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
La naturaleza del pensamiento de los profesores es una área de considerable interés y la atención hacia la relevancia de la geometría como un importante componente formativo es un hecho en los planteamientos interesados en la formación inicial y continuada del profesorado. En el ámbito de la investigación cualitativa, presentaremos las contribuciones de un entorno virtual para el desarrollo crítico del contenido del conocimiento profesional del profesor de matemática. Específicamente, analizar un proceso teleinteractivo docente a partir de situaciones de enseñanza-aprendizaje en geometría (para alumnos con 11-14 años). La importancia del proceso teleinteractivo para el desarrollo de habilidades metacognitivas en los profesores es un hecho destacable en las conclusiones de la investigación.
Resumo:
El concepto de límite es importante en la educación media, dado que es relevante para introducir otros conceptos como continuidad, derivada, integral, entre otras; de igual manera, sabemos desde diversos autores y desde nuestra experiencia con el aprendizaje de límites, que su enseñanza ha sido algorítmica y tradicional, por lo tanto, se hace necesario replantear este tratamiento y proponer una forma dinámica, para que el estudiante pueda superar algunos de los obstáculos propuestos por Sierpinska (1987). Para esto, proponemos diseñar actividades que busca tratar y/o superar el obstáculo geométrico referido al concepto de límite, basado en un trabajo colaborativo que tendrá lugar en sesiones virtuales en horarios extraclase, que estarán apoyadas por sesiones presenciales (dentro del aula).
Resumo:
El concepto de límite es difícil de enseñar y aprender, dado que trae consigo diversos obstáculos que deben ser superados en su totalidad para aprender dicho concepto; por lo tanto crear actividades que permitan su comprensión contribuirá significativamente a facilitar este proceso (enseñanza- aprendizaje). De esta manera se proponen cuatro actividades que parten de la construcción del fractal “árbol pitagórico”; dicho fractal aporta al tratamiento del obstáculo geométrico del concepto de límite. Este obstáculo surge a través de la evolución del concepto de límite y es precisamente de la historia de donde surgen las actividades que se aplican a estudiantes de grado undécimo en entornos virtuales y presenciales, mediadas por el trabajo colaborativo.
Resumo:
El presente artículo es un producto derivado de la investigación: “La elipse como lugar geométrico a través de la geometría del doblado de papel en el contexto de Van Hiele”, en la que se analizó el proceso de comprensión del concepto de elipse como lugar geométrico, de cinco estudiantes del grado décimo de una Institución Educativa de la ciudad de Medellín. El estudio de casos cualitativo permitió el establecimiento de los descriptores de los niveles de razonamiento de Van Hiele que caracterizaron dicho proceso de comprensión y a su vez, iluminaron la creación de un guion de entrevista de carácter socrático, que se convirtió en una experiencia de aprendizaje para los estudiantes en tanto que les permitió avanzar en su nivel de razonamiento.
Resumo:
Esta experiencia de aula hace alusión a un proceso seguido por cuatro estudiantes para profesor dentro del espacio de formación de práctica docente, en el que todo inicia como un reto de ocho días para abordar la enseñanza de la geometría y del pensamiento espacial en estudiantes de segundo de primaria, desde la propuesta de Linda Dickson (1991), la cual centra su atención al estudio de los objetos tridimensionales,analizando sus propiedades y características físicas-visuales para proporcionar el camino hacia el aprendizaje de las representaciones bidimensionales de los mismos; ésta metodología de enseñanza enmarcada en una situación fundamental desde Brousseau (1986), llamada “viaje alrededor del mundo geométrico en ocho días” fue lo que resultó ser una experiencia inolvidable y sin duda de maravillosos aprendizajes.
Resumo:
En ocasión de la realización de la VI Reunión de Didáctica de la Matemática del Cono Sur realizada en Buenos Aires, Argentina, en Julio de 2002, el mismo grupo de docentes que escribimos el artículo "Poliedros en el aula" que se publicó en el volumen 49 de esta revista, presentamos en un taller la ampliación y continuación de la experiencia allí relatada, al nivel terciario.
Resumo:
En el marco de un acuerdo interinstitucional, se investiga e indaga acerca de la formación matemática de estudiantes de bachillerato tecnológico. Se aplicaron dos cuestionarios a 39 estudiantes de tercer semestre, uno sobre los fundamentos del tema de lugar geométrico de la recta en el plano y otro sobre los conocimientos requeridos para acceder a su enseñanza. Además, se entrevistó a dos estudiantes individualmente acerca de sus respuestas en el primer cuestionario. Los datos obtenidos revelaron deficiencias en la identificación y cálculo de una pendiente, en la expresión verbal, gráfica o simbólica de lugares geométricos simples, confusión entre segmento de recta y recta, desconocimiento de procedimientos geométricos elementales, de operatividad algebraica y falta de identificación de términos de expresiones simbólicas. La enseñanza de la recta en el curso de Geometría Analítica tuvo que enfrentar estas condiciones desde el principio.
Resumo:
En este documento trataremos algunas consideraciones teóricas en que basamos un trabajo en proceso, un estudio comparativo acerca de las concepciones sobre la transformación lineal en contexto geométrico entre dos tipos de actores educativos (profesores y estudiantes de matemáticas de distintas zonas geográficas en México). Nuestra intención es discutir algunas ideas del marco teórico de la investigación, en relación a algunos modelos intuitivos relacionados con la transformación lineal en contexto geométrico, utilizando la teoría de Fischbein (1987, 1989) y el trabajo de Molina (2004).
Resumo:
En este texto se analiza, en primer lugar, la posible conexión entre las destrezas de representación externa de figuras planas y el desarrollo de los niveles de razonamiento. Para ello se realizó un amplio estudio entre estudiantes de enseñanza obligatoria, bachillerato y universidad, cuyos resultados sugieren una respuesta positiva a la primera cuestión. Posteriormente, se formula una propuesta de nuevos descriptores para los niveles de razonamiento, en relación a la representación externa de figuras planas, que pueden contribuir a una mejor clarificación de aquellos y a una mayor integración curricular del modelo de Van Hiele.
Resumo:
En la actualidad el calculo del limite de una sucesión, tanto en bachillerato como en los primer cursos universitarios se viene realizando un enfoque exclusivamente analítico-algebraico. En este articulo proponemos un rico enfoque geométrico para iniciar este tema en el aula particularizando nuestra propuesta a las sucesiones trigonométricas.
Resumo:
El estudio tiene como principal propósito analizar la incidencia del desarrollo de un curso de geometría que utiliza como herramienta instruccional el software educativo CABRI GEOMETRE II, en la evolución del razonamiento geométrico de alumnos de educación superior. Tomando como base los niveles y fases del modelo de razonamiento geométrico de Van Hiele, se realizó una categorización referente al grado de adquisición de un determinado nivel, en relación a la naturaleza de la tarea. Los resultados obtenidos en el análisis corroboraron las hipótesis de que el factor instruccional es necesario para el progreso entre etapas de aprendizaje y que existe lentitud en la maduración del razonamiento geométrico de los alumnos, a pesar de vivir experiencias de enseñanza estructuradas e intencionales. Además, el avance promedio es de una etapa y no se detectaron diferencias significativas entre los niveles en cuanto a los avances promedio en las etapas de aprendizaje. Se concluye que el modelo de análisis diseñado en el estudio parece pertinente, porque establece secuencias, de etapas de aprendizaje adaptadas a la naturaleza de los ítems.
Resumo:
Este trabajo se propone compartir y discutir el resultado de una investigación en la que se utilizó la modelización del cálculo del volumen del ventrículo izquierdo del corazón como instrumento en el proceso de enseñanza-aprendizaje de las matemáticas para enriquecer y mejorar nuestra práctica cotidiana, realizada con alumnos que cursan el nivel medio. El modelo proviene de aproximaciones realizadas para poder entender mejor la naturaleza y severidad de las afecciones cardíacas y mostrar con una visión simplificada aspectos de diagnóstico médico. (Pichel y otros, 1988). Otorgar significatividad a conceptos como área y volumen. El proceso de modelización llevado a cabo en el aula siguió la secuencia planteada por Sallett Biembengut y Hein (1999). Esto dio origen a la búsqueda de información; a partir del análisis de la misma y de la elección de una figura se elaboraron actividades con el objeto de modelizarlo a través de alguna cuádrica. Esta experiencia se constituyó en un medio eficaz para la motivación ya que los alumnos optaron por un desarrollo activo, demostrando gran interés al realizar las actividades dado que trabajaron con situaciones reales, buscando respuestas en la matemática a problemas concretos de otras ciencias.
Resumo:
La geometría en el currículo de secundaria se introduce con la intención de proporcionar al alumno una mayor capacidad de comprensión de la organización espacial del mundo que nos rodea, exigiendo para ello un aprendizaje sistematizado. Con este propósito, el ``Grupo PI' trabaja en el desarrollo de actividades para el aula utilizando un material económico y de fácil adquisición como es el papel. El objetivo es proporcionar al profesor un material eficaz para el trabajo en el aula y aproximar a los alumnos a la Geometría Plana a través de una serie de tareas estructuradas que logran una mayor significatividad del proceso de aprendizaje. Se emplearán axiomas del origami para crear secuencias que permitan la construcción de representaciones significativas en los procesos de aprendizaje. Por último, intentaremos mostrar a los profesores la utilidad del papel como material didáctico en la construcción de conocimiento geométrico.
Resumo:
En este trabajo analizamos el conocimiento geométrico sobre polígonos de estudiantes para profesor peruano. Este conocimiento se describe en función de las capacidades que evidencian. Hemos determinado dichas capacidades con base en el modelo de razonamiento de Van Hiele y en consideraciones sobre el aprendizaje geométrico. Mostramos los resultados generales del grupo de alumnos, así como el estudio de dos casos.
Resumo:
En esta comunicación se presenta la primera parte de una investigación cuyo objetivo fue analizar si un experimento de enseñanza diseñado ad hoc ayudó a la construcción de caracterizaciones equivalentes del concepto de dependencia lineal, en lenguaje geométrico y analítico. En primer lugar se diseñó un experimento de enseñanza en un contexto de geometría dinámica utilizando simultáneamente representaciones geométricas y analíticas del concepto y se describió una ‘trayectoria hipotética de aprendizaje’ en términos del mecanismo de ‘reflexión sobre la relación actividad-efecto’. En segundo lugar se describieron las trayectorias de aprendizaje de estudiantes de 2o de bachillerato (17-18 años) identificando las ‘acciones de generalización’ y las ‘generalizaciones de la reflexión’.