6 resultados para Sentidos construidos
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En esta conferencia presentaré algunos resultados del estudio realizado sobre un fenómeno relacionado con la articulación de los sentidos asignados por estudiantes a diferentes representaciones de un objeto matemático, obtenidas mediante transformaciones semióticas de tratamiento. En este estudio describí y analicé algunos procesos de asignación de sentidos logrados por los estudiantes de grados 9o y 11o de educación básica y media (Colombia), en relación con tareas específicas en las que requieren realizar dichos tratamientos entre representaciones, y reporté algunas dificultades asociadas.
Resumo:
En esta comunicación breve quiero compartir con las personas interesadas en escuchar una propuesta de Evaluación para algunos de los procesos que se trabajan en Combinatoria. Manejando el discurso de la evaluación como un proceso que debe: Ser formativo, constructivo, Ser continuo, Ser sistematizado, Ser flexible. Además que inicia desde una actividad diagnóstica, pasando por una actividad formativa y finalizando en una evaluación sumatoria (resultado de la actividad formativa). Teniendo en cuenta que la evaluación nos debe permitir visualizar de manera clara y consistente los aspectos que estemos trabajando, sin olvidar que la evaluación debe permitir ser interpretada en todos los sentidos y direcciones: las respuestas de los estudiantes también están evaluando los currículos, los docentes y las estrategias de trabajo o sus ejecuciones (lineamientos curriculares del área de Matemáticas, MEN, 1998, p. 107/108). Veremos algunas características de la evaluación específicamente para el trabajo en Estadística y Probabilidad, extrayendo las que nos funcionan específicamente para nuestro tema Razonamiento Combinatorio. Todo enfocado a que el estudiante al final pueda: Plantear y resolver problemas, Formular y comunicar sus soluciones, Validar las soluciones de otros.
Resumo:
Este curso presenta un avance en la construcción de escenarios educativos para el aprendizaje de las matemáticas desde el cual se ofrece posibilidades a los estudiantes para encontrar las razones del por qué y para qué del propósito del proceso educativo. Los escenarios de aprendizaje construidos son las relaciones entre espacialidad, identidad y territorialidad, y la cual integra como eje temático contenidos de áreas curriculares como ciencias naturales, educación física, matemáticas, ciencias sociales y lenguaje. Esta relación permite identificar problemas que tienen contenidos importantes desde una perspectiva del aprendizaje, de la importancia sociológica de aprender en la escuela y de la posición misma de los niños.
Resumo:
Se hace un estudio algebraico y geométrico de los campanoides, nuevos objetos basados en los polígonos regulares, se definen, clasifican y muestra el proceso de su construcción. En este trabajo analizo específicamente el Campanoide Triangular indicando sus características, modelo algebraico que lo define y la ecuación para calcular su ´área en términos de la base, al final se muestran unos mosaicos construidos con estos campanoides.
Resumo:
Este trabajo propone tres escenarios construidos en un software dinámico que buscan relacionar el cálculo diferencial y el integral a través de la construcción comprensiva del teorema fundamental del cálculo. Dichos escenarios fueron construidos tomando como base las cuatro fases que sustentan el uso de herramientas tecnológicas en la resolución de un problema propuestas por Santos y Moreno (2013). Se resalta el acercamiento visual y empírico a través de la construcción de la derivada como la pendiente de la recta tangente a una curva, la construcción de la integral definida como el área bajo la curva en un intervalo cerrado y cómo éstas se relacionan en el teorema fundamental del cálculo.
Resumo:
En este artículo se estudia una familia de juegos infinitos y se caracteriza, en dos sentidos diferentes, cuándo se da el equilibrio. El trabajo está escrito para ser aprovechado directamente en el aula, por eso se realiza el estudio desde casos sencillos y particulares y se conduce al lector hacia una primera generalización. Obtenida la primera solución general, se discute su aplicabilidad real y se propone otra generalización, diferente a la primera, en consonancia con la realidad. Esta segunda generalización requiere de la introducción del concepto de apuesta y de la caracterización general de juego justo o equilibrado.