6 resultados para Representación del lector
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En el trabajo se propone un modelo didáctico de la representación del problema matemático y su formación en el proceso de resolución, que presenta como novedad científica, la concepción y fundamentación del representar como una habilidad, con una estructuración donde se integran las operaciones externas e internas, como dos fases cuyo resultado tributa a la excelencia de la representación. También se devela la representación como una dimensión dinamizadora del proceso de resolución de problemas matemáticos.
Resumo:
En esta sección vamos a proponer que el cine entre en la clase de matemáticas en secundaria. No se tratará sólo de entretener a los alumnos, aunque también (¡ojalá lo consiguiéramos más a menudo!), sino de aprovechar la fascinación de la pantalla para sembrar en sus mentes una idea esencial: las Matemáticas no son algo muerto, limitado a una clase y unos libros, sino que están en nuestro mundo, jugando un papel importante, tanto en la historia colectiva como en muchas historias personales. Pero hay que saber verlas, como también hay que saber ver el cine. El cine es la gran ilusión que en la oscuridad de una sala, que puede ser el aula, suplanta a la realidad. En clase, cada escena precisará un análisis posterior, una puesta en común que, además de enseñar a ver, establezca un nexo verosímil entre esa ilusión y la realidad verdadera. En cada artículo se harán reflexiones sobre el alcance y validez de la propuesta. Después, se propondrán diversas escenas, concretando los niveles y temas para su uso didáctico. Seguramente despierten la memoria cinematográfica del lector. SUMA podría ser receptora de las reseñas que permitan la localización de otras escenas por cualquier profesor interesado en la propuesta y componer con ellas un listado útil.
Resumo:
En este trabajo se describe una investigación en curso, en que se aborda una de las problemáticas que se presenta en los cursos de lógica o inteligencia artificial, en el tema de representación del conocimiento. Cuando se pide a los estudiantes formalizar enunciados del lenguaje común (natural) con el lenguaje de la lógica de predicados. Se describen algunos de los errores identificados con alumnos del nivel superior y se aplica la teoría de la actividad para caracterizar la habilidad de traducir enunciados del lenguaje común (natural) a fórmulas bien formadas del lenguaje de la Lógica de predicados. Se propone una base de orientación que se deben usar al resolver los problemas de formalización (traducción) que se plantean en los cursos mencionados.
Resumo:
Presentamos los primeros resultados de un estudio exploratorio sobre el desarrollo del conocimiento didáctico de futuros profesores de matemáticas con respecto a las nociones de estructura conceptual y sistemas de representación. Estos resultados se obtuvieron al codificar y analizar las grabaciones de clase y las producciones de estudiantes del último curso de Matemáticas en una asignatura de didáctica de las matemáticas. Se encontró que las producciones y las actuaciones de los alumnos pasan por diferentes estados que permiten identificar tanto algunas dificultades, como momentos en los que surgen reorganizaciones conceptuales.
Resumo:
En el presente trabajo se aborda el estudio de la variación de una función cualquiera cuando se tiene sólo su representación gráfica y no se conoce su representación algebraica, así como la relación de la función con su primera y su segunda derivada y la relación entre tales derivadas, esto es, la información que puede proporcionar cada derivada acerca de la función y la información que aporta cada derivada con respecto a la otra.
Resumo:
Uno de los problemas centrales que se presentan, para abordar el tema de límite, es sin duda cuando nos enfrentamos al concepto de infinito. Generalmente el docente al enseñar el concepto de infinito utiliza metáforas didácticas basadas en conjuntos muy grandes, esto para fijar la idea de infinitud. De acuerdo con la real academia española, esto permite crear la noción de infinito en un lenguaje cotidiano, lo que lleva a generar una mala formación de este concepto, dentro de un lenguaje matemático, ya que la imprecisión del lenguaje cotidiano hace ver al concepto de infinito muy vago y se aleja de la idea matemática como unidad total (Ortiz, 1994). El interés de nuestro trabajo se centra precisamente en el diseño de actividades, donde el estudiante pueda realizar y observar un proceso infinito, a través de ejemplos geométricos donde se presente la situación límite (proceso infinito culminado), permitiendo la formación del concepto de límite.