18 resultados para Problemas psicológicos de los músicos
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este artículo se hace un estudio de las actitudes que pueden generar en los alumnos, los problemas planteados en los libros de texto de matemáticas en educación secundaria. En el que se hace una breve explicación de las actitudes hacia el estudio de esta asignatura al constatar su escaso desarrollo, en comparación con el de los conocimientos conceptuales y procedimentales. También incluye un reconocimiento de los referidos problemas por los profesores, quienes comparten la tesis de que los problemas en contextos auténticos producen actitudes positivas, en tanto que los que se ubican en contextos artificiales producen actitudes negativas. Los alumnos al resolver dichos problemas afirman que los del primer tipo son interesantes porque los hacen pensar y los de contextos artificiales los enredan. Además se hacen consideraciones sobre la actualización de los libros de los alumnos, en términos de plantear problemas en contextos auténticos que generen actitudes positivas hacia las matemáticas.
Resumo:
En este artículo reportamos los primeros resultados de un estudio de las concepciones de los profesores sobre los problemas y ejercicios planteados en los libros de texto de matemáticas en educación secundaria, en términos de las actitudes positivas o negativas que pueden producir en los alumnos. Hemos analizado distintos trabajos que abordan esta problemática, en el sentido de que los problemas propuestos en los libros de texto generan gusto o rechazo a las matemáticas, en dependencia de los contextos en los que están inmersos. También se reporta el reconocimiento que hacen a estos problemas ocho profesores de este nivel educativo quienes describen las razones por las que un problema genera uno u otro tipo de actitud. En el futuro próximo, se plantea que los problemas discutidos serán resueltos por los alumnos, constatando las conjeturas de los profesores.
Resumo:
Presentamos algunos resultados de una investigación más amplia cuyo objetivo general es describir y caracterizar el razonamiento inductivo que utilizan estudiantes de 3¼ y 4¼ de ESO al resolver tareas relacionadas con sucesiones lineales y cuadráticas (Cañadas, 2007). Identificamos diferencias en el empleo de algunos de los pasos considerados para la descripción del razonamiento inductivo en la resolución de dos de los seis problemas planteados a los estudiantes. Describimos estas diferencias y las analizamos en función de las características de los problemas.
Resumo:
La enseñanza del Análisis Matemático en 1o y 2o de Bachillerato y primer año de Universidad, presenta unos problemas, asociados a los fenómenos didácticos inherentes al estudio de las Matemáticas, que es necesario tipificar a partir de la modelización del conocimiento matemático y del proceso de enseñanza escolar. En este Proyecto se estudian los conceptos elementales del Análisis Matemático –límite, continuidad, derivada e integral desde la perspectiva de los obstáculos epistemológicos y de los actos de comprensión (Sierpinska, 1997), en cuanto al saber escolar (detectado en los manuales), el saber enseñado (que figura en los apuntes de los profesores) y el saber del alumno (identificado por medio de sus respuestas a un cuestionario) tratando de extraer datos que faciliten el uso de estrategias de enseñanza-aprendizaje de estas nociones en situaciones de enseñanza adecuadas.
Resumo:
Se describe y analiza el desempeño de dos niños de educación primaria con edades comprendidas entre 6 y 7 años, en varias cuestiones y tareas sobre invención y resolución de problemas aritméticos verbales. Los resultados informan de su conocimiento informal sobre la idea de problema, los elementos que lo componen, el papel que juegan los números en un problema, y los factores que determinan que un problema sea difícil.
Resumo:
Este documento reporta los resultados de un estudio exploratorio aplicado a estudiantes de secundaria que presentan problemas de equiprobabilidad y centración en ejercicios de probabilidad basados en el razonamiento proporcional. Los problemas propuestos a los estudiantes han sido analizados por Green, Papinni, Fischbein y Gazit en investigaciones previas, de esta manera, nuestro aporte consiste en proponer una extensión a los resultados obtenidos por estos autores a partir de marco conceptual SOLO Taxonómico propuesto por Biggs y Collins (1982), que consiste en cinco niveles presentes en el ciclo de aprendizaje de una persona dentro de cada uno de los estadios de Piaget.
Resumo:
En esta conferencia se trata sobre una de las actividades más importantes y maltratadas de la enseñanza de la matemática: la resolución de problemas. Se trata de mostrar mediante ejemplos de la historia y la enseñanza actual que esta actividad ha estado presente desde siempre en la escuela y que durante unos 4000 años los problemas escolares han formado una clase especial de problemas con características semejantes que no contribuyen a desarrollar la capacidad de resolución de problemas. A partir de trabajos del autor y de algunos alumnos se incursiona en el mundo de las estrategias de resolución de problemas que utilizan los alumnos.
Resumo:
Presentamos algunos resultados de una investigación más amplia cuyo objetivo general es describir y caracterizar el razonamiento inductivo que utilizan estudiantes de tercero y cuarto de Secundaria al resolver tareas relacionadas con sucesiones lineales y cuadráticas (Cañadas, 2007). Identificamos diferencias en el empleo de algunos de los pasos considerados para la descripción del razonamiento inductivo en la resolución de dos de los seis problemas planteados a los estudiantes. Describimos estas diferencias y las analizamos en función de las características de los problemas.
Resumo:
El trabajo tiene como objetivo mostrar la forma y los resultados de aplicar tres estrategias cognitivas en la enseñanza de conceptos matemáticos y cómo estas posibilidades de enseñanza mejoran los niveles de razonamiento matemático y por ende las posibilidades de racionalizar problemas de las matemáticas, de otras ciencias y de la vida cotidiana. Presenta el marco teórico teniendo como base para este el cognitivismo como base del desarrollo del pensamiento y los enfoques cubano de la elaboración de conceptos, la enseñanza para la comprensión y la pedagogía conceptual. El razonamiento se ha definido como el desarrollo de los procesos de pensamiento aplicados a problemas matemáticos y los conceptos como construcciones abstractas de los sujetos. Se muestran las tres intervenciones realizadas en la Institución Educativa Normal Superior de Medellín de manera general, en uno de los dos conceptos trabajados. Los resultados permiten determinar que el mejoramiento del razonamiento matemático puede ser mejorado si las formas de trabajo en el aula están acordes con la manera como se define la forma en que los estudiantes aprenden. La ponencia es un acercamiento a un tema de interés para la investigación, el mejoramiento de la calidad en el pensar de nuestros estudiantes.
Resumo:
A través de una serie de tareas desarrolladas con un sofware de geometría dinámica, buscamos propiciar la comprensión de lo que es y lo que expresa una condicional en matemáticas. Por medio de problemas propuestos, en los cuales se debe formular una conjetura, como resultado de la exploración realizada y la determinación de invariantes, se busca que los participantes del taller comprendan que las condiciones establecidas en el antecedente son sucientes para concluir el consecuente y que el consecuente es necesariamente resultado de las condiciones que se reportan en el antecedente.
Resumo:
El último de los problemas propuesto a los lectores en el Tratado de Huygens, publicado por primera vez en 1657, es hoy día conocido como el problema de la ruina del jugador. Dicho problema consiste en calcular la probabilidad de que un jugador arruine al contrario en un juego a un número indeterminado de partidas, cuando los dos jugadores inician el juego con un cierto número de monedas cada uno. A priori, su enunciado asusta cuando se enfrenta por primera vez, pero puede ser un buen recurso didáctico para profesores que enseñan cálculo de probabilidades a estudiantes de un determinado nivel, dada la resolución elegante y cómoda que se dispone, sin necesidad de un gran aparato matemático. La autoría del problema, tradicionalmente asignada a Huygens, la resolución de éste, la de De Moivre de 1712, así como una resolución más actual y cercana al estudiante del mismo, forman parte del contenido de este artículo.
Resumo:
En esta comunicación presentamos el sistema tutorial inteligente, al que hemos llamado AGENTGEOM, y analizamos cómo interactúa con un alumno en la resolución de un problema que compara áreas de superficies planas. En esta interacción, el alumno llega a apropiarse de habilidades estratégicas y argumentativas en la resolución de problemas. Observaremos que estas apropiaciones son consecuencia de las formas de comunicación alumno-AGENTGEOM, en las que se combinan construcciones gráficas y sentencias escritas que siguen las normas del lenguaje matemático, y la emisión de mensajes escritos en lenguaje natural.
Resumo:
Partiendo de las resoluciones de 165 estudiantes de 4º de las ESO (15-16 años), hablamos sobre las dificultades de un tipo particular de problemas (problemas de nivel N0) y las relacionamos con su estructura y con el contexto en el que están formulados. Mostramos como, en efecto, es posible hablar de la influencia del contexto, principalmente sobre la dificultad de la solución del problema, y de una influencia significativa de la estructura sobre otras dos de las dificultades consideradas en este estudio: la dificultad apreciada del problema y la dificultad del problema.
Resumo:
Se presentan, como siempre, las soluciones a problemas planteados en anteriores artículos siguiendo las fases: comprender (datos, objetivos, relaciones, representación), pensar (estrategias posibles), ejecutar (las estrategias) y responder (comprobando los resultados, analizando la solución y respondiendo adecuadamente). Asimismo se presentan otros nuevos, bajo el vínculo de "Problemas de los abuelos" relacionados con algunos juegos cuyas reglas se exponen. Los fundamentos de estos juegos son: solitario con cartas, cuatro en raya, Nim y minas.
Resumo:
El propósito de esta comunicación es el de analizar los lineamientos contenidos en los programas de estudio de matemática del tercer ciclo y de la educación diversificada del Ministerio de Educación Pública de Costa Rica, relacionados con la resolución de problemas.