108 resultados para Problemas de generalización lineal
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Describimos la generalización que logran estudiantes de 3º y 4º de Educación Secundaria Obligatoria (ESO) en la resolución de problemas que involucran sucesiones lineales y cuadráticas. La descripción se centra en aspectos relativos al razonamiento inductivo y a las estrategias inductivas. Estas estrategias permiten describir el proceso seguido en términos de los elementos y los sistemas de representación correspondientes al contenido matemático.
Resumo:
Presentamos algunos resultados de una investigación más amplia cuyo objetivo general es describir y caracterizar el razonamiento inductivo que utilizan estudiantes de 3¼ y 4¼ de ESO al resolver tareas relacionadas con sucesiones lineales y cuadráticas (Cañadas, 2007). Identificamos diferencias en el empleo de algunos de los pasos considerados para la descripción del razonamiento inductivo en la resolución de dos de los seis problemas planteados a los estudiantes. Describimos estas diferencias y las analizamos en función de las características de los problemas.
Resumo:
En la primera parte de este trabajo se analizan las características generales del proceso de formación, desarrollo y generalización conceptual. Se analiza, además, la importancia de utilizar la resolución de problemas como un medio para facilitar estos procesos. En la segunda parte, a partir de una experiencia docente, se muestra el comportamiento de dos grupos de alumnos que tomaron parte en el proceso de formación, desarrollo y generalización del concepto de media numérica.
Resumo:
Este estudio tiene como objetivo examinar cómo los futuros profesores de secundaria (EPS) reconocen evidencias de la comprensión del proceso de generalización en estudiantes de secundaria. Los EPS realizaron dos tareas: (1) describir las respuestas dadas por estudiantes de secundaria a dos problemas de generalización lineal y agrupar las que reflejaban características comunes de la comprensión del proceso de generalización; (2) participar en un debate virtual sobre las características de la comprensión del proceso de generalización. Los resultados indican que la participación en el debate virtual permitió a los EPS centrar su mirada en las ideas que subyacen en el proceso de generalización (generalización cercana y lejana e intento de expresar la regla general, pasando de una estrategia aditiva a una funcional) más que en el procedimiento realizado.
Resumo:
Este reporte trata sobre una investigación realizada en la Universidad de Camagüey que se planteó como objetivo la elaboración de un programa analítico de la asignatura álgebra lineal y geometría analítica para la carrera de Ingeniería Mecánica que permitiera elevar la eficiencia del mismo para la solución de problemas y tareas docentes por parte de los estudiantes. Los métodos empleados fueron tanto teóricos como empíricos, mediante ellos y a partir del problema considerado se constató que la concepción existente del Programa Analítico de la asignatura no es adecuado para asegurar el balance entre su nivel de generalización teórica y la solución de problemas con el consecuente desarrollo de habilidades prácticas profesionales e investigativas para garantizar el encargo social. En la investigación se demostró que la articulación teórica y práctica empleando el enfoque sistémico y la teoría de la actividad, permitió dar base teórica a la integración de los temas del álgebra lineal y geometría analítica. Además se rediseñó el programa de la asignatura y su aplicación contribuyó a elevar la eficiencia del proceso de enseñanza-aprendizaje de la misma.
Resumo:
En este documento presentamos un procedimiento para caracterizar las estrategias empleadas en la resolución de problemas relacionados con sucesiones de números naturales lineales y cuadráticas que involucran el razonamiento inductivo. Este procedimiento se fundamenta en la naturaleza del razonamiento inductivo y en el análisis de contenido de las sucesiones, teniendo en cuenta la estructura conceptual, los sistemas de representación y los aspectos cognitivos asociados al contenido matemático.
Resumo:
En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de tercero y cuarto de Secundaria en la resolución del "problema de las baldosas". Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.
Resumo:
En este trabajo se reportan los resultados obtenidos con 39 estudiantes del Instituto Santa María Goretti de Bucaramanga, institución que viene participando en el proyecto “Incorporación de Nuevas Tecnologías en el Currículo de Matemáticas de la Educación Básica y Media de Colombia” desde el año 2002, quienes dieron solución a un problema de una carrera de fórmula 1, donde Juan Pablo Montoya sale de pits con una aceleración de 4 m/seg2 y en ese mismo instante pasa Michael Schumacher con una velocidad constante de 252 Km/hora. Este problema fue simulado en Cabrí Geometry en una pista circular, para el estudio de las funciones lineal y cuadrática. El trabajo con la simulación permitió que las estudiantes identificaran con mayor precisión las variables y no variables y que a través de la toma de datos y análisis de ellos llegaran a obtener diferentes representaciones (numérica, grafica, tabular, algebraica) de las funciones lineal y cuadrática. Además de relacionar los conceptos aprendidos en el estudio del movimiento uniforme y uniformemente acelerado.
Resumo:
En esta comunicación se presenta la primera parte de una investigación cuyo objetivo fue analizar si un experimento de enseñanza diseñado ad hoc ayudó a la construcción de caracterizaciones equivalentes del concepto de dependencia lineal, en lenguaje geométrico y analítico. En primer lugar se diseñó un experimento de enseñanza en un contexto de geometría dinámica utilizando simultáneamente representaciones geométricas y analíticas del concepto y se describió una ‘trayectoria hipotética de aprendizaje’ en términos del mecanismo de ‘reflexión sobre la relación actividad-efecto’. En segundo lugar se describieron las trayectorias de aprendizaje de estudiantes de 2o de bachillerato (17-18 años) identificando las ‘acciones de generalización’ y las ‘generalizaciones de la reflexión’.
Resumo:
El actual currículo de matemáticas de la educación secundaria da gran importancia a procesos de razonamiento tales como la generalización. La investigación en Educación Matemática viene estudiando el modo en que se desarrollan estos procesos a través de distintos contenidos matemáti- cos. El tipo de representación que los estudiantes utilizan para expresar su razonamiento también es objeto de estudio ya que influye de manera decisiva en sus posibilidades para alcanzar la generalización. En el trabajo que se presenta a continuación, se analizan diferentes formas de expresar la generalización que utilizan estudiantes de secundaria cuando resuelven problemas que involucran sucesiones lineales y cuadráticas. Los autores han realizado un estudio en el que han participado 359 estudiantes de se- cundaria. Identifican la representación gráfica como una herramienta útil para lograr la generalización y analizan su conexión con otras formas de representación.
Resumo:
Entre los aspectos fundamentales que sugiere la temática del Taller están aquellos relacionados con la construcción de conocimiento matemático en contextos escolares y en particular, el papel de la generalización en la formación de conceptos, las situaciones problema en las que ellos intervienen y las diferentes formas y niveles de generalización implicadas en la matemática escolar. Entonces surgen preguntas sobre ¿cómo se revela la generalización en los textos escolares y cómo se asume en las instituciones educativas (programa, maestros, alumnos, ...)?, ¿cómo generar procesos de generalización a través del desarrollo de actividades especialmente diseñadas con este fin?, a través de los cuales es posible plantear situaciones que movilicen el proceso de generalización en la escuela.
Resumo:
El presente reporte de investigación de tipo cualitativo, tiene por objeto dar a conocer, como parte de la investigación, resultados relacionados con los procesos de generalización que se presentan en alumnos de edades 14-15 años al tratar con sucesiones figurativas, en donde el patrón matemático se comporta en forma lineal y cuadrática. Se señala que el hacer uso de patrones, desarrolla el pensamiento algebraico, así como también permite a los estudiantes desarrollar la comprensión del concepto como establecer relaciones matemáticas. Como parte de la perspectiva teórica se ha empleado el Modelo Teórico Local, considerando tres de los cuatro componentes: Competencia formal, modelo de enseñanza y procesos cognitivos.
Resumo:
La simulación computacional de problemas de probabilidad permite obtener sus soluciones a través de la frecuencia relativa del número de éxitos obtenidos en los n experimentos realizados. La ley de los grandes números respalda una buena aproximación de la probabilidad teórica de un evento a través de la repetición sucesiva de experimentos. A continuación se presentan una serie de problemas probabilísticos con una posible simulación realizada en los paquetes Fathom y Excel. La solución teórica de estos problemas requiere conocimientos básicos de probabilidad, por lo que las simulaciones realizadas buscan dar una propuesta de solución a estos problemas sin tener que acudir al formalismo matemático.
Resumo:
El presente trabajo consiste en la segunda parte de una aplicación de los valores y vectores propios de una matriz, para resolver una relación de recurrencia homogénea lineal con coeficientes constantes. La aplicación abordada utiliza la teoría de matrices de Jordan, para generalizar el método de trabajo que se expuso en la primera parte de este artículo.
Resumo:
En este trabajo se presentan las experiencias desarrolladas con el objetivo de contribuir a la formación de habilidades para la resolución de problemas en estudiantes de primer año de la carrera de Licenciatura en Matemática. Concretamente, se presenta la propuesta de actividades a desarrollar dentro del contexto de la asignatura “Seminario de Problemas I", con la que se inicia el programa de la disciplina “Práctica Profesional del Matemático”, existente en el plan de estudio de la carrera en las universidades cubanas desde el curso 1990-91 (Plan de Estudio “C” de la carrera de Matemática). Uno de los propósitos del curso es recorrer, a partir de problemas físicos, geométricos, algebraicos, etc., diferentes etapas de la investigación matemática desde la formulación del problema; la obtención del modelo matemático (por ejemplo, determinar las raíces de una ecuación); los métodos de resolución (exactos y aproximados: numéricos y/o analíticos) y su implementación computacional; la utilización de técnicas para verificar la corrección de los resultados obtenidos (compatibilidad con las unidades de magnitud, estudio de casos limite, etc.) y su interpretación. Otro objetivo importante que persigue este curso es contribuir al desarrollo de hábitos de investigación científica mediante la orientación de un trabajo de curso sobre aspectos de la vida y obra de algún matemático. La exposición y defensa de los resultados de sus búsquedas, ante el colectivo de estudiantes, permite desarrollar sus habilidades de expresión oral y su formación cultural en la especialidad.