13 resultados para Poesia concreta
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Se analizan resultados de un estudio con alumnos de secundaria, en el que se utiliza un modelo virtual de la balanza para la enseñanza de la resolución de ecuaciones de primer grado. A diferencia del modelo concreto o diagramático, el modelo virtual es dinámico e interactivo y en su versión ampliada (balanza con poleas) incluye la representación y resolución de ecuaciones con sustracción de términos. Los resultados indican que al final del estudio, los alumnos logran extender el método algebraico de resolución a una variedad amplia de modalidades de ecuaciones y que de manera espontánea infieren el método de transposición de términos. Con el fin de investigar los procesos de producción de sentido y de construcción de significado, se adopta una perspectiva semiótica que incorpora al análisis las producciones sígnicas de los estudiantes, como parte de la interacción entre los sistemas de signos algebraico, aritmético y el sistema de signos del modelo.
Resumo:
El proceso de indagación que se describe en este artículo se llevó a cabo con el fin de obtener información que nos ayudara en nuestro quehacer pedagógico. Exploramos la opinión de los alumnos sobre los aportes que el estudio de las matemáticas les ha brindado en su formación, y comparamos los resultados obtenidos en los distintos grados en los que se hizo la exploración. El artículo presenta una descripción del contexto en el que ocurrió la experiencia, incluye la justificación que nos condujo a la definición concreta del problema y del objetivo, expone la forma como se recolectó y organizó la información, y finaliza con algunas impresiones y reflexiones sobre los resultados obtenidos.
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.
Resumo:
Se presentan las ideas centrales y las técnicas del análisis de contenido que corresponden al módulo 2 de MAD. El módulo 2 de MAD 2 tiene como finalidad contribuir al conocimiento teórico y técnico de los profesores en formación sobre el análisis de contenido. Esta finalidad se concreta por medio de cuatro actividades en las que los profesores en formación tienen la oportunidad de dar sentido y utilizar, para el análisis de un tema de las matemáticas escolares, los cuatro organizadores del currículo que acabamos de mencionar. Además, tienen la oportunidad de recolectar y organizar toda la información producida para estos organizadores del currículo en un balance final.
Resumo:
Expongo una conceptualización de aprendizaje desde la teoría de la práctica social que se concreta en una propuesta sobre cómo ver el aprendizaje de la demostración en geometría euclidiana plana. Las ideas se ilustran con fragmentos de la actividad académica realizada por estudiantes de segundo semestre de Licenciatura en Matemáticas. La conferencia está dirigida a futuros profesores, profesores de matemáticas de secundaria y formadores de docentes.
Resumo:
La intención de este trabajo es presentar algunas teorías y concepciones de la Matemática Educativa y su implementación concreta en cursos de Cálculo Diferencial en una y varias variables. Se expondrán algunas ideas de la Resolución de Problemas, Investigación - Acción, Constructivismo Social (Teoría de Aprendizaje de Vigotsky) y algunos elementos de Ingeniería Didáctica. De todas estas teorias, se mencionan diversos ejemplos, implementados en los cursos de la Universidad de la República (Montevideo, Uruguay), entre los años 1995 y 2002. La exposición estará complementada con la presentación de resultados, y a partir de los mismos se obtendrán conclusiones y se formularán recomendaciones.
Resumo:
Se presentan las ideas centrales y las técnicas del análisis de contenido que corresponden al módulo 2 de MAD. El módulo 2 de MAD 2 tiene como finalidad contribuir al conocimiento teórico y técnico de los profesores en formación sobre el análisis de contenido. Esta finalidad se concreta por medio de cuatro actividades en las que los profesores en formación tienen la oportunidad de dar sentido y utilizar, para el análisis de un tema de las matemáticas escolares, los cuatro organizadores del currículo que acabamos de mencionar. Además, tienen la oportunidad de recolectar y organizar toda la información producida para estos organizadores del currículo en un balance final.
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.
Resumo:
Las matemáticas y la pintura trabajan con ideas. La palabra idea viene del griego ειδω, que significa ver, mirar u observar, y de ειδοζ, que significa figura, forma, aspecto o visión. Detrás de una montaña concreta está la idea de montaña, un dibujo abstracto, unas líneas que permiten reconocer la montaña detrás de las rocas, los pinos o la nieve. La diferencia entre este árbol y árbol, entre un círculo que dibujamos en la pizarra y círculo: la diferencia entre la cosa y la idea de la cosa. En matemáticas y en pintura se buscan las ideas de las cosas.
Resumo:
Conocimiento es la información sin uso, el saber es la acción deliberada para hacer del conocimiento un objeto útil frente a una situación problemática. De donde se deduce que el aprendizaje es una manifestación de la evolución del conocimiento en saber. Por lo que el aprendizaje consiste en dar la respuesta correcta antes de la situación concreta.
Resumo:
El texto que sigue es un comentario sobre un libro de FW Lawvere y SH Schanuel de publicación reciente pero con una beca de gestación, que contiene una experiencia concreta introducción de conceptos de la teoría categorías del estadio temprano de enseñanza de las matemáticas. El comentario incluye cumbre de análisis comparativo de este experiencia actual con la protagonizada por PJ Hilton en el año 70. La diferencia entre ambas propuestas explican términos de la evolución general de la teoría a lo largo de la segunda mitad del presente siglo, particularmente en el último cuarto.
Resumo:
La sección áurea puede ser un tema al que hacer referencia en distintos momentos y etapas del currículo escolar. Es idóneo para mostrar la relación entre las matemáticas y otras asignaturas del ámbito de humanidades y, de esta forma, contribuir a destruir el muro que tradicionalmente separa a los alumnos en «de letras» y «de ciencias». En este articulo, estudiando el ritmo de intensidad de la poesía clásica española, descubrimos cómo en los metros fundamentales y más utilizados por los autores de todos los tiempos podemos encontrar bien razones áureas, bien otras no menos bellas.
Resumo:
La resolución de problemas es uno de los aspectos centrales en las nuevas propuestas curriculares que en la actualidad se realizan sobre la enseñanza de las matemáticas. No obstante, son numerosas las dificultades que aparecen en el aula cuando esta idea quiere llevarse a la práctica, por la falta de conexión con la actividad concreta que los profesores desarrollan. El trabajo que ahora se presenta quiere dar a conocer algunos de los resultados de una investigación más amplia llevada a cabo en la escuela de magisterio de Badajoz uno de cuyos objetivos era describir el conocimiento práctico personal de los profesores de E.G.B. sobre la resolución de problemas.