11 resultados para Pasado traumático
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
A lo largo de la licenciatura de Matemáticas (que terminamos el curso pasado), el rigor ha sido la característica predominante: siempre se ha demostrado todo lo afirmado o utilizado. Este hecho hizo que no concibiéramos unas matemáticas sin demostraciones. Con este enfoque de las matemáticas iniciamos nuestro periodo de prácticas (correspondientes a la asignatura "Prácticas de la Enseñanza" de quinto curso) y nos enfrentamos por primera vez con la realidad educativa: no todo lo que se le explica a los alumnos debe ser objeto de demostración. Mediante esta comunicación pretendemos compartir nuestras reflexiones sobre el valor de la demostración en las matemáticas de la Enseñanza Secundaria.
Resumo:
En los últimos años la probabilidad ha pasado a formar parte del currículo de los programas de matemáticas en la educación básica de una gran cantidad de países del mundo. Esta realidad plantea un reto didáctico que conlleva no sólo la elaboración de los programas para cada nivel educativo, sino su implementación didáctica en el salón de clase. Por la experiencia alcanzada en los cursos universitarios y por las investigaciones didácticas realizadas recientemente, se acepta que la probabilidad es un tema particularmente difícil.
Resumo:
En los últimos años del siglo pasado y específicamente desde la promulgación de la Ley General de Educación, las políticas educativas en Colombia han tenido como meta la solución del problema de la baja calidad de la educación; por esta razón se han promovido cambios y se ha prestado especial interés a la evaluación como estrategia primordial para conseguir ese propósito. A través de la evaluación se pretende mejorar los niveles de aprendizaje de los estudiantes y enriquecer el desarrollo profesional de los maestros. Pero la forma de concebir la evaluación no ha cambiado mucho y la manera como se lleva a cabo, poco o nada contribuye en la formación de personas para lograr un nivel adecuado dentro de una sociedad democrática.
Resumo:
Se indaga en los desplazamientos entre herramientas de comunicación que ponen en juego profesores a la hora de comunicar qué y cómo cambia en una situación, en el marco de una línea de investigación en Pensamiento y Lenguaje Variacional (Proyecto Fondecyt Nº1030413 y Proyecto Diumce 06/07). Adscribimos a una mirada sistémica en la que entendemos a las matemáticas como una actividad humana en donde cobra vital importancia la persona haciendo matemáticas y no sólo el producto matemático. Por ello resulta relevante considerar -en la praxis educativa- las negociaciones y búsqueda de consenso entrelazadas éstas, con las acciones cognitivas de la persona al momento de enfrentarse a la solución de un problema. Asumimos una naturaleza de la noción de variación como red semántico operacional transversal, que imbrica distintos contenidos escolares de ciencia experimental y de matemática, particularmente aquellos de tiempo y velocidad. Entendemos al tiempo cotidiano formado por una red compleja de intencionalidades y coordinaciones que se estructuran a partir de las necesidades de coordinación con lo otro, con los otros y de las proyecciones intencionales hacia un futuro y un pasado, y, al tiempo matemático en su calidad de parámetro y figurado sobre la base de la metáfora de una distancia horizontal. A continuación se analizan, desde ese marco conceptual, las herramientas a que recurren profesores para comunicar cambios en una situación específica desarrollada en el marco las actividades del Proyecto de Investigación Las representaciones docentes del Cambio.
Resumo:
Desde el siglo pasado se ha recalcado la importancia que tiene la capacidad espa- cial en la inteligencia y en la enseñanza-aprendizaje de las matemáticas. En este trabajo se ha elegido el modelo de Carroll para analizar la capacidad espacial del alumnado de la Escuela Politécnica Universitaria de San Sebastián. Se han plan- teado tres objetivos: (a) analizar la capacidad espacial de los estudiantes de prime- ro en función de la especialidad y del sexo, y en relación con la nota obtenida en di- bujo técnico; (b) analizar, igualmente, la capacidad espacial de los estudiantes de tercero; y (c) comparar ambos resultados.
Resumo:
El modelo del presente como un punto que recorre la recta del tiempo dejando el pasado a la izquierda y el futuro a la derecha, es demasiado simple. Calvino admite más de un posible futuro aunque al final sólo vivamos uno de ellos, ya sea por voluntad propia o impuesta. Los demás dejan inmediatamente de pertenecer tanto a nuestro futuro como a nuestro pasado.
Resumo:
El pasado 15 de abril se cumplían 300 años del nacimiento de uno de los cuatro matemáticos más geniales de la historia, Leonhard Euler. Para mí, los otros tres, y que cada cual elija su orden, son Arquímedes, Newton y Gauss. Si la calificación la hiciésemos atendiendo a la cantidad de los trabajos de primer orden realizados por cada uno de ellos, sin duda Euler ocuparía el primer lugar. A lo largo de su extensa vida Euler produjo más de ochocientos libros y miles de artículos y trabajos. Sus obras completas Opera Omnia ocupan más de 80 volúmenes. Sin lugar a dudas es el matemático más prolífico de la Historia. Pero, con ser importante la cantidad de trabajos, el aprecio de los matemáticos contemporáneos y posteriores a él se debe más a la riqueza, originalidad, belleza y genial agudeza de su obra que a su volumen.
Resumo:
Las aportaciones del presente trabajo-informe provienen de las múltiples ocasiones que, en conferencias escuchadas, ponencias asistidas, artículos de revistas y de prensa, conversaciones privadas, Jorge Wagensberg (Director científico de los Museos de Ciencia de la Fundación La Caixa) me (nos) ha tratado de comunicar, tras una experiencia de más de 20 años en el Museo de la Ciencia de Barcelona, cuáles eran las hipótesis de trabajo para construir y desarrollar, en el mismo lugar pero con mucho más espacio, un nuevo Museo de la Ciencia. También de la experiencia generada por una exposición de la Fundación La Caixa “Y después fue... ¡La Forma!” que ha itinerado por múltiples lugares de España (en particular estuvo en el Museo Elder de Las Palmas de Gran Canaria entre Noviembre de 2003 y Febrero de 2004). Y, por último, de la realidad del Museo CosmoCaixa de Barcelona, ya inaugurado el pasado 23 de Septiembre. Todo esto (hipótesis, experiencia y realidad) que Jorge Wagensberg nos ha contado antes y mostrado ahora, es pura museología científica en su forma más moderna y más actual.
Resumo:
Se han publicado en estos días de nuevo las estadísticas sobre el consumo de prensa en nuestro país: seguimos estando en 108 ejemplares por 1000 habitantes. Superamos ligeramente por arriba el nivel del subdesarrollo marcado por la UNESCO: 100 ejemplares. Y lejos, por supuesto, de los niveles de los países de nuestro entorno, que se suele decir ahora. Pero hay un elemento distorsionador. En esos países (Inglaterra, Alemania...) suben las estadísticas las tiradas de la prensa «amarilla», de los periódicos de cotilleos, suplidos aquí por las tiradas inmensas de las revistas del «corazón». A pesar de que suponen un capítulo importante de los medios, y por tanto de la conformación de la opinión pública, no siempre se tienen en cuenta, se les suele despreciar como poco importantes. Algo así ha pasado en esta sección... ¡hasta este momento!
Resumo:
Las matemáticas modernas han sido un slogan durante una década. Las matemáticas modernas, interpretadas literalmente matan la educación; interpretadas de acuerdo con su espíritu pueden darle vida. El autor sitúa las matemáticas en sus contextos, histórico, social y de desarrollo intelectual, y la educación matemática en el contexto de la educación en general, así como su desarrollo pasado y presente. En la cúspide de la producción científica, generalmente se reconoce que las matemáticas son una actividad, mucho más que un almacén de conocimientos bien establecido. La filosofía sobre la enseñanza que el autor proclama es que esta idea se aplica a todos los niveles del proceso de aprendizaje. Se analizan estos niveles en numerosos ejemplos. Esta teoría general va seguida de un análisis de varios conceptos y campos matemáticos cruciales.
Resumo:
Aún si su trabajo parece no estar vinculado con la matemática, Mathematica puede ser de su interés. Con este recurso el arduo trabajo del cálculo -numérico o simbólico- resulta cosa del pasado, el desarrollo de materiales didácticos tiene nuevas y revolucionarias herramientas, las aplicaciones de modelos matemáticos pueden producir resultados sin ocuparse de la implementación computacional de complicados algoritmos matemáticos, en suma, con las computadoras y Mathematica se multiplican las capacidades para entender, desarrollar y aplicar las matemáticas y ciencias afines.