18 resultados para Obstáculos

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La enseñanza del Análisis Matemático en 1o y 2o de Bachillerato y primer año de Universidad, presenta unos problemas, asociados a los fenómenos didácticos inherentes al estudio de las Matemáticas, que es necesario tipificar a partir de la modelización del conocimiento matemático y del proceso de enseñanza escolar. En este Proyecto se estudian los conceptos elementales del Análisis Matemático –límite, continuidad, derivada e integral desde la perspectiva de los obstáculos epistemológicos y de los actos de comprensión (Sierpinska, 1997), en cuanto al saber escolar (detectado en los manuales), el saber enseñado (que figura en los apuntes de los profesores) y el saber del alumno (identificado por medio de sus respuestas a un cuestionario) tratando de extraer datos que faciliten el uso de estrategias de enseñanza-aprendizaje de estas nociones en situaciones de enseñanza adecuadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O projecto de investigação “Estudio sobre la enseñanza-aprendizaje de conceptos fundamentales del análisis matemático (limite, continuidad, derivada e integral) en manuales y en estudiantes del Bachillerato-LOGSE y de primer curso universitario” parece muito interessante nomeadamente quando pretende estudar os problemas relacionados com o ensino e aprendizagem da Análise Matemática nos dois anos do Bachillerato e no primeiro curso da Universidade, e juntar na mesma equipa professores dos dois níveis de ensino envolvidos. O facto de se ligar o ensino da Análise Matemática no pré-universitário e no universitário é um aspecto inovador na investigação em educação matemática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilizar álgebra computacional no es tan fácil como puede parecer. Frecuentemente, los estudiantes encuentran obstáculos mientras trabajan en un entorno de álgebra computacional. En este artículo se distinguen los obstáculos globales y los locales, y se identifican los de ambas categorías. La teoría de la instrumentación proporciona un marco para interpretar el obstáculo como un desequilibrio entre los aspectos conceptual y técnico de un esquema de instrumentación. Se argumenta que explicitar los obstáculos y tratar de superarlos, conduce al desarrollo conceptual. En consecuencia, los obstáculos constituyen oportunidades de aprendizaje.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frecuentemente, al iniciar el estudio de conceptos básicos del análisis matemático, nos encontramos con dificultades y errores relacionados con la división por cero. La necesidad de dar respuesta a esta problemática, da origen a este trabajo que retoma las respuestas dadas por un grupo de alumnos de la escuela media que constituyen las evidencias sobre las cuales se inicia el proceso de investigación que se encuentra en su primera etapa de realización y cuyos resultados parciales se exponen aquí. Se enmarca la tarea en la perspectiva socioepistemológica indagando en los orígenes y evolución de este conocimiento, analizando los alcances y efectos del discurso matemático escolar vigente en la educación media y contemplando las concepciones de los alumnos acerca del cero y la división construidas en ambientes escolarizados y no escolarizados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El concepto de continuidad está íntimamente ligado a los de infinito y límite. En este trabajo se presenta primeramente un breve recorrido por las ideas que influyeron históricamente en la construcción matemática del concepto de continuidad a lo largo de la historia del pensamiento humano y se analizan las concepciones que sobre este concepto tienen los alumnos a las distintas edades, con la finalidad de clarificar ideas y buscar nuevas estrategias didácticas para abordar el tema del continuo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El concepto de función ha evolucionado a través de la historia gracias a la superación de algunos obstáculos adheridos a otros conceptos como la razón, la proporción y la medida. Con base en ello, se prepara el camino para realizar una transposición didáctica y abordar desde allí la noción de función, apoyando el diseño y la implementación de una secuencia de actividades cuyo interés es mostrar que a través una de situación fundamental mediada por el análisis de facturas de servicios públicos, y las fases de la TSD1, es posible acercarse a la noción de función desde los isomorfismos de medida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Son muchas las investigaciones que han resaltado la importancia de un conocimiento de la evolución histórica de un concepto matemático en la comprensión de los obstáculos y razonamientos de los estudiantes al interior del aula de clase (Posada & Villa,2006). Con base en este argumento, se presenta en este documento los resultados de una indagación histórica sobre la evolución del concepto de función cuadrática que ofrece al lector algunas pautas que le sean útiles a la hora de diseñar situaciones didácticas que involucren el concepto objeto de este estudio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La enseñanza-aprendizaje de los conceptos elementales del Análisis matemático en el nivel del Bachillerato, constituye uno de los puntos de investigación en Didáctica de las Matemáticas más relevantes en la actualidad. Desde marcos teóricos diferentes como la ingeniería didáctica, teoría de obstáculos, la teoría antropológica o el APOS, se han realizado investigaciones sobre la enseñanza-aprendizaje del límite de una función en los niveles de enseñanza de Bachillerato y Universitaria. En este trabajo se presenta una propuesta de investigación, en la que se aplica la teoría de las cuestiones semióticas (TFS), mediante la cual se busca describir, explicar e identificar factores condicionantes de la enseñanza-aprendizaje del límite de una función en un contexto institucional fijado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El concepto de límite es importante en la educación media, dado que es relevante para introducir otros conceptos como continuidad, derivada, integral, entre otras; de igual manera, sabemos desde diversos autores y desde nuestra experiencia con el aprendizaje de límites, que su enseñanza ha sido algorítmica y tradicional, por lo tanto, se hace necesario replantear este tratamiento y proponer una forma dinámica, para que el estudiante pueda superar algunos de los obstáculos propuestos por Sierpinska (1987). Para esto, proponemos diseñar actividades que busca tratar y/o superar el obstáculo geométrico referido al concepto de límite, basado en un trabajo colaborativo que tendrá lugar en sesiones virtuales en horarios extraclase, que estarán apoyadas por sesiones presenciales (dentro del aula).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El concepto de límite es difícil de enseñar y aprender, dado que trae consigo diversos obstáculos que deben ser superados en su totalidad para aprender dicho concepto; por lo tanto crear actividades que permitan su comprensión contribuirá significativamente a facilitar este proceso (enseñanza- aprendizaje). De esta manera se proponen cuatro actividades que parten de la construcción del fractal “árbol pitagórico”; dicho fractal aporta al tratamiento del obstáculo geométrico del concepto de límite. Este obstáculo surge a través de la evolución del concepto de límite y es precisamente de la historia de donde surgen las actividades que se aplican a estudiantes de grado undécimo en entornos virtuales y presenciales, mediadas por el trabajo colaborativo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diversas investigaciones han mostrado la dificultad que existe en el proceso de enseñanza aprendizaje del concepto de límite; más aún cuando este presenta diversos obstáculos (geométrico, horror al infinito, relativo a funciones y ligado al símbolo)que deben ser superados en su totalidad para aprender dicho concepto. De esta manera, el presente trabajo pretende mostrar cómo desde un contexto geométrico se hace uso de los fractales, específicamente del fractal “árbol pitagórico”, el cual se propone durante tres sesiones de clase en estudiantes de grado undécimo para ir construyendo la noción de límite. En este sentido, se busca promover un aprendizaje más dinámico y autónomo, donde el estudiante tenga un contacto directo con la construcción de dicho concepto.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo forma parte de la primera etapa del Proyecto de Investigación “Análisis del Lenguaje Matemático y su influencia en los procesos de Validación en estudiantes universitarios de Ingeniería” realizado en forma conjunta por la Facultad de Agronomía UNCPBA (Azul-Argentina), y la Facultad de Química e Ingeniería UCA (Rosario-Argentina). Aquí se presentan y analizan los resultados de una encuesta piloto en pos de caracterizar las dificultades y obstáculos para la comprensión y traducción entre los registros de expresiones verbales o escritas (lenguaje proposicional) y su representación en lenguaje algebraico (uso de símbolos matemáticos) en los estudiantes que ingresan a la Universidad.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este documento, se presentarán las etapas para diseñar un Modelo Instruccional en ambientes virtuales interactivos para la enseñanza de los números Reales, que tiene en cuenta: la formación matemática de los estudiantes, sus “niveles”, sus ritmos de aprendizaje, sus obstáculos en el aprendizaje y el tiempo oficial propuesto por la institución educativa para abordar los temas. Además, se explicitan, organizan y relacionan muchos de los elementos que se conjugan, y se camuflan, en la enseñanza y el aprendizaje de los temas matemáticos. Este diseño plantea ciertos elementos para el análisis del Discurso Matemático, del discurso didáctico y toma ciertos resultados de las investigaciones en Educación Matemática (Taxonomía SOLO y la Teoría de Súperítemes entre otras) para poner en relación los niveles en el discurso didáctico con los niveles de abstracción de los estudiantes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El trabajo tiene por objetivo describir algunos obstáculos y desafíos que enfrentan los profesores de Matemática al iniciar actividades de modelización. A su vez, se busca caracterizar las ventajas y desventajas que le encuentran los profesores a esta estrategia de enseñanza cuando la implementan en sus clases habituales en la escuela secundaria. Los profesores realizaron una capacitación virtual, referida a la enseñanza de la Matemática con nuevos recursos, donde la resolución de problemas y las actividades de modelización fueron el eje de curso. Los resultados muestran que a los profesores se les presentan dificultades en el momento de abordar actividades de modelización, lo que conlleva a que no siempre sea vista como una estrategia de enseñanza viable de ser utilizada en las clases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este reporte de investigación centra la atención al discurso del profesor en el aula de matemáticas en la Educación Media Superior, cuando se pretende enseñar conceptos y procesos matemáticos ligados a la noción de semejanza. Considerando que uno de los obstáculos en la evolución de este concepto ha sido la relación entre los aspectos figurativo y numérico. Nos preguntamos en qué medida el discurso del aula de matemáticas facilita las interpretaciones de las normas sociomatemáticas. Nuestro objetivo es presentar una aproximación a la noción del discurso en el aula para la identificación de normas sociomatemáticas que deberán regular las actuaciones y las formas de actuación que han de ser válidas para la construcción de consensos en el aula. El marco teórico en el que se sitúa la investigación es el enfoque interaccionista y análisis del discurso. Consideraremos un modelo de investigación cualitativa, basado en el método etnográfico, en donde los episodios que en este reporte se presentan forman parte del trabajo interpretativo en general.