47 resultados para Nivel de comprensión

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los mapas conceptuales se pueden emplear como una técnica de estudio y como una herramienta para el proceso de enseñanza y aprendizaje de las matemáticas, permitiendo al docente explorar los conocimientos previos que sus estudiantes tienen frente a un tema específico, favoreciendo la construcción de relaciones y organización de conceptos, fomentando la reflexión, el análisis y la creatividad. La implementación de los mapas conceptuales en investigaciones relacionadas con el aprendizaje y la enseñanza de las matemáticas, han mostrado que éstos ponen de manifiesto los procesos de razonamiento seguidos por el estudiante, evidenciando las conexiones entre los conceptos matemáticos que pueden dar lugar a proposiciones válidas o no válidas y a diferentes niveles jerárquicos, que a su vez, proporcionan una visión sobre el nivel de comprensión que poseen, tanto profesores como estudiantes, en dichos conceptos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Esta investigación se realizó con alumnos de Nivel Medio Superior (NMS) que habían cursado la asignatura de Matemáticas I y que tenían dificultades con la comprensión del concepto de número racional. El propósito fue poner en escena situaciones didácticas, para explorar sus efectos en la comprensión de este concepto. Para tener información precisa de cuál es el estado que guardaba este conocimiento en los alumnos, se hizo un diagnóstico, por lo que se diseñaron y validaron las situaciones que se utilizarían tanto en el diagnóstico como en la puesta en escena. En su diseño se consideraron los contenidos de aritmética de NMS, diferentes sistemas de representación y el modelo utilizado por Sierpinska sobre los actos de comprensión de conceptos matemáticos. Al comparar los resultados que se obtuvieron en el diagnóstico con los de la puesta en escena de las situaciones didácticas, se encontró que: el permitir que los alumnos conocieran diferentes formas de representar a los números racionales, el significado de cada una de ellas, así como convertir o traducir unas representaciones en otras a través de las situaciones didácticas, propició la construcción de este concepto y mejoraran su comprensión.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las observaciones en el aula de clase y el trabajo con los estudiantes del grado décimo de la Institución Educativa Normal Superior de Medellín mostraron que existían dificultades en el nivel de los procesos de pensamiento que se utilizaban al resolver los problemas matemáticos o querer aprender un concepto, estas dificultades consistían en la no aplicación del proceso necesario para resolver la tarea planteada fuera ésta el comprender, el realizar, explicar o verificar. Estas observaciones mostraron además que los procesos que manejaban los estudiantes no estaban acordes con los niveles que las teorías cognitivas plantean para su edad, el pensamiento formal propio de esta época aun no emergía y cada problema en el aula era resuelto solamente desde el punto de vista concreto. Teniendo en cuenta esto se concluyó que era necesario mejorar el proceso de razonamiento matemático, es decir llevar al estudiante a que aplique los procesos mentales necesarios para llegar al aprendizaje del concepto, la resolución de problemas y siga avanzando hasta llegar a la argumentación, pero en medio del trabajo cotidiano en el aula, esto es elevar los niveles de razonamiento de los estudiantes y con ello equilibrar el desarrollo de su pensamiento a su edad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desde distintos planteamientos las investigaciones han proporcionado información sobre las características de la comprensión del concepto de derivada en los estudiantes. Sin embargo, falta más información sistemática sobre indicadores que ayuden a describir el desarrollo de la comprensión de dicho concepto. En este trabajo, desde la teoría piagetiana del desarrollo de un esquema a través de los niveles intra, inter, trans, caracterizamos una evidencia empírica de cómo el uso que se hace de las “relaciones lógicas” entre diferentes elementos matemáticos del concepto derivada por parte de los estudiantes cuando resuelven un problema, aporta información para explicar el fenómeno de paso de un nivel de desarrollo del esquema derivada al siguiente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muchos alumnos de cursos posteriores al segundo grado de BUP tienen a nivel de información, el conocimiento de los límites del tipo infinito y menos infinito. Saben que son indeterminadas, pero en principio, el concepto no está suficientemente integrado en su estructura racional. Para corregir esto, les sugiero la resolución del siguiente problema, que no recuerdo de donde lo tomé o a quién se lo oí.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La comprensión del conocimiento matemático constituye un objeto de investigación de interés creciente en Educación Matemática. No obstante, su elevada complejidad hace que los avances más recientes aún resulten insuficientes y reclama la necesidad de ir adoptando enfoques más operativos y menos preocupados por el estudio directo de sus aspectos internos. En tal sentido, se presentan aquí las bases de una aproximación centrada en los efectos observables de la comprensión, que utiliza el análisis de comportamientos y respuestas adaptadas a situaciones expresamente planificadas derivadas del análisis fenómeno-epistemológico del conocimiento matemático. La operatividad de la propuesta se ilustra con el estudio realizado sobre el algoritmo estándar escrito para la multiplicación de números naturales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La comprensión del conocimiento matemático constituye un objeto de investigación de interés creciente en Educación Matemática. La elevada complejidad de su estudio y el considerable volumen de conocimientos sobre el tema disponible en la actualidad, justifican la pertinencia de trabajos como el que aquí se presenta, que tiene como principales propósitos delimitar, a través de la reflexión sobre distintas cuestiones abiertas fundamentales, algunos de los principales problemas actuales en torno a la investigación sobre comprensión en matemáticas y trazar, en base a ellos, posibles vías de actuación operativas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este taller (de una sesión) se proponen ciertas actividades que conectan el algebra con diversas situaciones del mundo real. La idea es hacer que los presentes desarrollen las tareas para que conozcan otras alternativas para construir conceptos como tasa de cambio o pendiente, modelamiento de datos, líneas de mejor ajuste, datos atípicos, errores en experimentos, bases de ingenierías civil, uso de modelos matemáticos para hacer predicciones y cuando los modelos matemáticos no describen la realidad de los experimentos. En el taller se realizaran tres actividades: A. FORTALEZA DE LAS VIGAS B. ATANDO NUDOS C. CONSTRUCCION DEL TRIACONTRAEDRO ROMBICO (LAMPARA DANESA) El realizar estas experiencias nos ayudaran a entender los estados de conflicto que entra el estudiante a la hora de procesar, adquirir y afianzar el conocimiento

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo pretendemos sintetizar algunas cuestiones de método aplicables a la investigación educativa. Para ello reflexionamos sobre el método seguido para la realización de una amplia investigación de referencia, Vallecillos (1994), que pertenece al campo de la educación estadística. Es un ejemplo de lo que podemos llamar ‘método estadístico’ que puede aplicarse como ‘modelo’ en la investigación educativa en general. Se incluyen también, a modo de ejemplo de su funcionamiento, los resultados obtenidos en esa investigación sobre la comprensión de un concepto clave en los contrastes de hipótesis como el nivel de significación.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La enseñanza del Análisis Matemático en 1o y 2o de Bachillerato y primer año de Universidad, presenta unos problemas, asociados a los fenómenos didácticos inherentes al estudio de las Matemáticas, que es necesario tipificar a partir de la modelización del conocimiento matemático y del proceso de enseñanza escolar. En este Proyecto se estudian los conceptos elementales del Análisis Matemático –límite, continuidad, derivada e integral desde la perspectiva de los obstáculos epistemológicos y de los actos de comprensión (Sierpinska, 1997), en cuanto al saber escolar (detectado en los manuales), el saber enseñado (que figura en los apuntes de los profesores) y el saber del alumno (identificado por medio de sus respuestas a un cuestionario) tratando de extraer datos que faciliten el uso de estrategias de enseñanza-aprendizaje de estas nociones en situaciones de enseñanza adecuadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O projecto de investigação “Estudio sobre la enseñanza-aprendizaje de conceptos fundamentales del análisis matemático (limite, continuidad, derivada e integral) en manuales y en estudiantes del Bachillerato-LOGSE y de primer curso universitario” parece muito interessante nomeadamente quando pretende estudar os problemas relacionados com o ensino e aprendizagem da Análise Matemática nos dois anos do Bachillerato e no primeiro curso da Universidade, e juntar na mesma equipa professores dos dois níveis de ensino envolvidos. O facto de se ligar o ensino da Análise Matemática no pré-universitário e no universitário é um aspecto inovador na investigação em educação matemática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partiendo de las resoluciones de 165 estudiantes dede las ESO (15-16 años), hablamos sobre las dificultades de un tipo particular de problemas (problemas de nivel N0) y las relacionamos con su estructura y con el contexto en el que están formulados. Mostramos como, en efecto, es posible hablar de la influencia del contexto, principalmente sobre la dificultad de la solución del problema, y de una influencia significativa de la estructura sobre otras dos de las dificultades consideradas en este estudio: la dificultad apreciada del problema y la dificultad del problema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta investigación presenta la puesta en práctica de una propuesta pedagógica para apoyar la enseñanza del Cálculo mediante la resolución de problemas a nivel preuniversitarioen Costa Rica. El proyecto tiene su origen en las dificultades que presentan los estudiantes en la comprensión de conceptos básicos de Cálculo, específicamente el de límite y derivada. Esta experiencia se fundamentó en la elaboración de una “situación problema” que provocó un conflicto intelectual en los estudiantes, mientras que el docente fungió como mediador y aprovechó los descubrimientos hechos por los estudiantes para fundamentar teóricamente los diferentes conceptos luego de la aplicación de la propuesta. Los resultados obtenidos son muy positivos y justifican la necesidad de un cambio en las estrategias metodologías utilizadas para enseñar el Cálculo. Sin embargo, es necesario un acercamiento de los docentes hacia la Teoría de Resolución de problemas para aplicar con éxito este tipo de actividades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente artículo es un producto derivado de la investigación: “La elipse como lugar geométrico a través de la geometría del doblado de papel en el contexto de Van Hiele”, en la que se analizó el proceso de comprensión del concepto de elipse como lugar geométrico, de cinco estudiantes del grado décimo de una Institución Educativa de la ciudad de Medellín. El estudio de casos cualitativo permitió el establecimiento de los descriptores de los niveles de razonamiento de Van Hiele que caracterizaron dicho proceso de comprensión y a su vez, iluminaron la creación de un guion de entrevista de carácter socrático, que se convirtió en una experiencia de aprendizaje para los estudiantes en tanto que les permitió avanzar en su nivel de razonamiento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta es una experiencia de aula llevada a cabo en el ciclo 2, la cual estuvo a cargo de dos profesoras practicantes quienes promovieron la estructura multiplicativa hasta identificar los múltiplos y divisores de un número, dicha experiencia se rigió desde lo metodológico por la estructura propuesta por el grupo DECA (); a nivel conceptual por varios autores como Verganud, Maza (1991),y otros; y finalmente el marco legal por los Estándares Básicos (2007) y los Lineamientos (1998. Se realizaron una serie de actividades que promovieron el reconocimiento y conceptualización de la división como reparticiones equitativas, y promovieron la reflexión tanto de los estudiantes como de las profesoras, en torno a la utilidad, facilidad y aceptación de las actividades para la comprensión de los estudiantes.