185 resultados para Números enteros
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
La unidad didáctica que exponemos a continuación aborda los elementos que consideramos ne-cesarios para la solución de las dificultades que los estudiantes de grado séptimo encuentran al resolver situaciones que involucran la adición y sustracción de números enteros. Presentamos la descripción del problema a tratar, la manera en la que lo abordamos y los principales resultados de nuestra experiencia. Posteriormente, en el cuerpo de este documento, presentamos la funda-mentación del diseño de la unidad didáctica, seguido del análisis didáctico para la adición y sus-tracción de números enteros, la descripción y justificación del diseño de la unidad didáctica, la evaluación de la implementación, y el balance de la experiencia y reflexiones hacia el futuro. Fi-nalizamos presentando nuestras conclusiones.
Resumo:
La investigación se realiza en el Instituto Tecnológico Metropolitano de Medellín con estudiantes de 8º, 9º y 10º, en el marco de reconocimiento de los procesos de prueba propuestos por Nicolás Balacheff, analizando los procesos que realizan, y buscando identificar si la ausencia de éstos al interior del aula se debe al poco o mal manejo de los conceptos matemáticos, por esto se realiza una categorización de los errores y las dificultades que comenten los estudiantes; basados en el marco de la Enseñanza para la Comprensión, por último se establecerán estrategias didácticas que permitan a los estudiantes superar las dificultades, mejorando el dominio de los conceptos.
Resumo:
El máximo común divisor entre un número primo p y cada uno de los enteros positivos menores que p es igual a 1 y, como el máximo común divisor se relaciona con la función parte entera según una fórmula explícita dada por el matemático brasileño M. Polezzi (1997), entonces se halló una interesante proposición que relaciona los números primos, la función parte entera, los números cuadrados y los números triangulares. Esa proposición sirve como un nuevo test para probar la primalidad de un número.
Resumo:
Quisiéramos que algunos de estos juegos de palabras sirvan de inspiración para la realización de actividades para la clase, a nuestros lectores.
Resumo:
Este proyecto de investigación tiene como finalidad diseñar situaciones en las que se vinculen procesos de aprendizaje en las áreas de matemáticas y lenguaje, para la población con limitación visual y auditiva, en Instituciones Educativas Distritales Inclusivas; utilizando tecnologías que optimicen y enriquezcan procesos de aprendizaje que hagan referencia a los números enteros en el caso de las matemáticas; y de la narrativa y la argumentación en el área de lenguaje. Propiciando así el pleno desarrollo y participación de los estudiantes ciegos y sordos para lograr el perfeccionamiento de sus competencias matemáticas y lingüísticas.
Resumo:
Casi todo el mundo ha oído hablar de Leonardo de Pisa, más conocido como Fibonacci. Sí, claro, el de la famosa sucesión 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,...; la de los girasoles, las piñas, las espirales, la del número de oro. Incluso hay un vídeo dedicado a él.
Resumo:
En este trabajo utilizamos los razonamientos que llevan a cabo doce alumnos de Secundaria durante la resolución de una tarea matemática para detectar los errores en que incurren y las dificultades que encuentran en su ejecución. Se les propone la tarea en un contexto de entrevista semiestructurada en la que se guía a los alumnos por el camino a seguir. Entre los datos que se obtienen, se encuentran los errores aparecidos en el desarrollo de la tarea. El análisis de dichos errores se ha hecho siguiendo las clasificaciones de Evans (González, 1998) y Radatz (1979), y se conecta dichos errores con dificultades específicas siguiendo la clasificación de Socas (1997). Se concluye este trabajo con algunas reflexiones que conside-ramos interesantes para profesionales de la enseñanza de las matemáticas.
Resumo:
Los números de Fibonacci han cautivado por muchos años al ser humano por sus aplicaciones en la vida cotidiana y en otras disciplinas. En este documento se presenta el origen de los números de Fibonacci, sus propiedades y su contribución a las matemáticas.
Resumo:
Soluciones a los ejercicios propuestos en el anterior NÚMEROS, con especial incidencia en la metodología de su resolución. Análisis de los problemas de la XX Olimpiada Nacional Matemática. Propuesta de nuevos enunciados. Ejercicios de diferentes niveles y contenidos.
Resumo:
En este artículo se muestran varias poesías que tienen a los números como protagonistas, escritas por autores tanto famosos como menos conocidos, españoles o extranjeros, con el objetivo de facilitar al profesor de Matemáticas de los niveles de Primaria, Secundaria y Bachillerato un no muy habitual recurso metodológico que pueda utilizar en sus clases para conseguir, por una parte, un mayor interés, gusto y motivación de sus alumnos por la asignatura, y por otra, para tratar las competencias socio-culturales, lingüísticas e idiomáticas que debe desarrollar en sus clases, permitiéndole de este modo la promoción de la interdisciplinaridad entre Lengua y Matemáticas, tan deseable para la formación global de sus alumnos.
Resumo:
Los números usualmente se han trabajado, tanto en los cursos de Primaria como en Secundaria, como instrumentos para realizar actividades en el aula sin tener en cuenta, en muchos casos, que se encuentran en el entorno y se utilizan usualmente en la vida cotidiana. Por ello se presentarán actividades extraídas de situaciones reales en que los números estén en contextos cotidianos que potencien la discusión, la toma de decisiones y que establezcan un enlace entre los centros educativos y el entorno. De esa manera se pretende reflexionar sobre el concepto de número en la práctica educativa diaria con la esperanza de que se considere un instrumento que facilite a los estudiantes vivir en su propio entorno y les ayude a desarrollarse como ciudadanos.
Resumo:
El presente trabajo expone ciertos aspectos de los números racionales e irracionales que generalmente son poco trabajados en las clases sobre los números reales en el bachillerato. La célebre paradoja de Aquiles y la tortuga sirve de pretexto para analizar a los números racionales y su periodicidad vía la noción de serie. Por lo que respecta a los números irracionales, la comparación del lado de un cuadrado y su diagonal nos sirven para introducir el concepto de inconmensurabilidad. Se presenta también un pequeño software, a manera de demo para apoyo de los temas tratados.
Resumo:
Ya hace unos años A.K. Dewdney en su libro 200% de nada, se hacia eco de los curiosos usos sociales de los números donde se exagera la precisión de los mismos, en casos donde no tiene sentido (1.234.567 manifestantes, 345.674 peces en el lago, 14 horas 45 minutos 34 segundos andan- do,...), con vistas a dar una versión “mas científica” de la información que se desea transmitir. A este fenómeno lo bautizó Dewdney como “dramadigits”. Una conocida historia de John Allen Paulos es la del vigilante de un museo de ciencias naturales que estando ante un gran esqueleto de dinosaurio fue preguntado por unos visitantes sobre la antigüedad de aquellos restos y contestó con una sorprendente precisión: “90.000.006 años”. Extrañados los visitantes sobre los 6 años pidieron explicaciones al paciente guarda y éste respondió “cuando llegué aquí me dijeron que el dinosaurio tenia 90.000.000 de años y de esto ya hace 6 años”. En este clip me gustaría compartir algunas historias cuyo común denominador es este extraño sentido de la precisión.
Resumo:
El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: Solo existen dos números mórficos, el número de oro y el número plástico.
Resumo:
El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: “solo existen dos números mórficos, el número de oro y el número plástico”.