86 resultados para Matemática y Arte
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Esta ponencia muestra las producciones de alumnos del Colegio Proyección Siglo XXI de Osorno – Chile, relativas a la creación de publicidad con diferentes propósitos y utilizando contenidos matemático de su elección. Estas actividades han sido plantadas a los estudiantes con el propósito de que sean capaces de visualizar la aplicación de la matemática en diferentes contextos. Como resultado de la experiencia, se ha logrado que los alumnos que tienen desarrolladas otras habilidades, las apliquen y se destacan entre sus pares.
Resumo:
Este trabajo se estructura en torno a la evolución (no histórica)del problema de la Educación Matemática. Una vez constatado el fracaso de la respuesta pedagógica a dicho problema, surge la Didáctica de las Matemáticas que lo aborda tomando en consideración, de manera integrada, "lo matemático" y "lo pedagógico", lo que provoca una doble ruptura: con la Pedagogía y con los modelos epistemológicos ingenuos, transparentes e incuestionables del conociminento matemático. En la segunda parte del trabajo se esquematizan muy brevemente las respuestas que proporcionan a dicho problema los dos principales Programas de Investigación en Didáctica de las Matemáticas: el Programa Cognitivo y el Programa Epistemológico.
Resumo:
La importante revista inglesa Nature, en su Volumen 340 del mes de Julio de 1989, publica interesantes resultados referentes a una encuesta realizada simultáneamente en los Estados Unidos de Norteamérica y en Inglaterra, para averiguar el concepto que el hombre común tiene de la ciencia y de sus métodos, así como del interés por la misma y del grado de conocimientos referentes a algunas de sus realizaciones. La encuesta se hizo sobre una muestra de unos dos mil norteamericanos y otros tantos ingleses, tomados al azar entre mayores de 18 años.
Resumo:
La construcción de la didáctica de las matemáticas como área de conocimiento científico trata de romper con la ilusión de transparencia que emerge del dominio de realidad configurado por los hechos didácticos. En este trabajo analizaremos la transparencia de los hechos didácticos a partir de diferentes investigaciones llevadas a cabo en esta área de conocimiento. En ellas se muestra cómo el análisis epistemológico de los objetos matemáticos de enseñanza es una condición necesaria para poder interpretar racionalmente los hechos y fenómenos didácticos.
Resumo:
Este curso presenta un avance en la construcción de escenarios educativos para el aprendizaje de las matemáticas desde el cual se ofrece posibilidades a los estudiantes para encontrar las razones del por qué y para qué del propósito del proceso educativo. Los escenarios de aprendizaje construidos son las relaciones entre espacialidad, identidad y territorialidad, y la cual integra como eje temático contenidos de áreas curriculares como ciencias naturales, educación física, matemáticas, ciencias sociales y lenguaje. Esta relación permite identificar problemas que tienen contenidos importantes desde una perspectiva del aprendizaje, de la importancia sociológica de aprender en la escuela y de la posición misma de los niños.
Resumo:
En este trabajo se pretende evidenciar, mediante experiencias de aula, que la estrategia metodológica de Resolución de Problemas planteadas por Pólya (1965), Shoenfeld (1985) y Brousseau (1986), desarrolla competencias básicas, genéricas y específicas. Los resultados muestran que las actividades de resolución de problemas planteadas promovieron la comprensión lectora, el trabajo en equipo, la capacidad de razonamiento y argumentación frente a sus compañeros/as, la capacidad lógica de reconocimiento, el descubrimiento de patrones, exploración de problemas similares, reformulación de problemas, trabajo hacia atrás, la participación activa de los estudiantes y el desarrollo de líderes (Espinoza, et al., 2008)
Resumo:
El proceso de aprendizaje y enseñanza de la Matemática presenta tradicionalmente una serie de dificultades. Su objeto de estudio, que es pura abstracción creada por el ser humano, así como la existencia de diferentes estilos y ritmos de aprendizaje en los estudiantes, son algunos de los factores que influyen en las dificultades mencionadas. La clase planificada y dirigida a la media del curso provoca frustraciones en los que tienen menos aptitud hacia la Matemática y aburrimiento en los más aventajados. Con el objetivo de que los estudiantes de último año pudieran aprovechar más efectivamente la diversidad curricular, se diseñaron tres grupos diferenciados de Matemática, con un mismo programa, pero ofreciendo la oportunidad de experimentar con un grupo afín en intereses y habilidades, y con una metodología adecuada a los ritmos y estilos de aprendizajes de cada individuo. En este trabajo presentamos la experiencia de estudiantes, profesores, psicólogos y directivos en un esfuerzo común por lograr el desarrollo humano integral.
Resumo:
Tomando como inicio el contexto de la Matemática para su enseñanza, encontramos que existen múltiples relaciones entre ella y diferentes ramas del Arte. El tema que presentamos en este taller es ilimitado. Presentaremos algunos “matemáticos-escritores”, algunos autores del género “Matemática Recreativa” y otros ejemplos de famosos científicos que incursionaron en la Literatura o famosos literatos que incursionaron en la Matemática. En definitiva, se trata de mostrar, brevemente, algunos vínculos entre la Matemática y la Literatura, ya que estos textos pueden utilizarse como disparador para la introducción de nuevos contenidos.
Resumo:
Profesores experimentados y noveles con alguna experiencia en el uso de aprendizaje cooperativo en sus clases de Matemática y aquellos que han mostrado algún interés en desarrollar este ambiente de aprendizaje en sus clases de matemática, encontraron un espacio de debate a partir de la presentación de las interrogantes siguientes: ¿Cómo el aprendizaje cooperativo satisface las necesidades de cooperación y de comunicación? ¿Aprender “juntos”, en grupo, es sinónimo de aprendizaje cooperativo? ¿Cómo pueden ser utilizadas Hojas de Trabajo como una base de orientación y de posicionamiento en la Zona de Desarrollo Próximo ?¿Qué principios pueden regir su uso? ¿Hasta qué punto es posible enseñar-aprender matemática desde el aprendizaje cooperativo y cuáles son los “peligros” inherentes a este ambiente de aprendizaje? Se presentan algunas experiencias en el uso de aprendizaje cooperativo en los EE.UU y en Cuba. En el caso de Cuba, presupuestos del enfoque histórico cultural y de la actividad sustentan la experiencia.
Resumo:
Al respecto de las múltiples angustias surgidas por docentes de matemáticas en formación entorno a las dificultades y errores evidenciados por estudiantes de básica segundaria y media en la construcción de pensamiento algebraico, se expone a continuación para el caso de la generalización algebraica los hallazgos logrados desde la investigación que recupera en primera instancia a manera de reseña los referentes teórico conceptuales, las definiciones pertinentes y la clasificación de las dificultades y errores en la educación matemática especialmente en el caso de algebra; de igual manera se detallan características y acuerdos conceptuales entorno a razonamiento, razonamiento algebraico; esta ponencia evidencia los presupuestos e ideales para la educación matemática y la enseñanza del algebra para finalmente establecer la relación y justificación conceptual entre: sistemas de representación (errores); las dificultades (comprensión) y razonamiento algebraico. Con la exposición de ejemplos logrados en las experiencias de aula y analizados producto del trabajo de campo en este estudio, se presenta a manera de propuesta los comentarios, reflexiones y recomendaciones que permitirán al futuro docente de matemáticas diseñar un modelo de competencia formal y cognitivo para entender y actuar en situaciones de la enseñabilidad que se dan en el entorno educativo en especial en relación al razonamiento algebraico.
Resumo:
La propuesta que hoy presentamos, es el resultado de varios años de implementación del proyecto liderado por el Ministerio de Educación, las Universidades y algunas Secretarías de Educación, conocido como Incorporación de Nuevas Tecnologías al Currículo de las Matemáticas de la Educación Básica y Media de Colombia con la mediación de los Software Interactivos como Cabri y los accesorios externos como sensores para toma de datos. Al definir el objeto de las matemáticas, encontramos que su aprendizaje no sólo se basa en formar el espíritu lógico, sino también proporcionar herramientas para la solución de problemas reales. Por lo tanto, se debe combinar el rigor lógico con la funcionalidad, puesto que además de la lógica formal las matemáticas proporcionan también un poderoso conjunto de herramientas que posibilitan describir, explicar, predecir y modelar situaciones no sólo del mundo científico, sino también de la vida cotidiana (significación). Es por esto, que juega un papel importante implementar en su didáctica, el referirla al mundo de la naturaleza, de las otras ciencias (interdisciplinariedad), y de la cotidianidad del hombre. Es fácil ver los nexos que tienen las Ciencias Naturales con el mundo extraescolar, lo que permite construir el conocimiento a partir de proyectos en donde se manipule en forma directa el mundo real. Las temáticas que se trabajan en esta propuesta además de permitir lo anterior, proporcionan el estudio formal de las matemáticas y el desarrollo de sus diferentes pensamientos. Los ejes temáticos trabajados son: Cinemática, Luz, Electricidad, Calor y Energía y propiedades químicas de las sustancias, entre otras.
Resumo:
La evaluación es tema fundamental en la discusión sobre la educación matemática y sus referentes incorporan aspectos conceptuales, sino metodológicos, didácticos de la matemática escolar acorde con los lineamientos vigentes. Tal es el caso de la evaluación por competencias en el Examen de Estado, que ha sido objeto de análisis y críticas sobre la manera como ha interpretado y diseñado el instrumento de evaluación, en particular las preguntas que dan cuenta de las competencias interpretativa, argumentativa y propositiva en matemáticas. Sabemos que su análisis permite conceptualizar cada vez mejor la evaluación y así mismo ofrecer a la comunidad de matemática educativa otros elementos de reflexión sobre lo que nos ocupa: cualificar la educación básica y media.
Resumo:
El presente trabajo se desprende de la práctica docente que se está llevando a cabo en el Centro Educativo Femenino de Antioquia (CEFA) en la ciudad de Medellín con estudiantes del grado décimo, el cual tiene como intención primordial retornar la geometría al aula de clase como una herramienta que facilita la interpretación de las ideas matemáticas y físicas, empleando la metodología de aula-taller como fundamento para alcanzar tal fin. Hasta ahora se ha logrado despertar un relevante interés en el manejo del lenguaje geométrico y una mejor interpretación de algunos conceptos como el teorema de Pitágoras y el número Pi, a partir de uso del material concreto que ayuda al estudiante a alcanzar una mejor apropiación de dichos conceptos.
Resumo:
Arquímedes es el matemático y científico de todos los tiempos, desde la Antigüedad hasta nuestros días; en él se personifican variedad de métodos para resolver situaciones matemáticas y científicas, además de ideas fundamentales que han acompañado la evolución de muchos conceptos de las matemáticas y las ciencias; entre ellas están las ideas sobre el cálculo integral, la geometría de los cuerpos redondos, la cuadratura de la parábola, la conceptualización sobre espejos y poleas, la palanca y las ideas sobre flotación de los cuerpos, a través de la experimentación. Es por ello que, siguiendo algunas de sus rutas, se desarrollará el taller “Algunas ideas matemáticas y físicas de Arquímedes”, mostrando a través de algunas de estas experiencias desarrollos metodológicos, e integración de ideas de las matemáticas con otras áreas del conocimiento científico. Además, estos métodos permiten desarrollar ideas, que pueden ser aplicadas en procesos de aprendizaje de algunos conceptos de las matemáticas, que son enseñados en la Educación Básica y Media de nuestros jóvenes. Asimismo, en este taller mostraremos algunos senderos de aprendizaje de las matemáticas, integrados a las ciencias naturales, siguiendo algunos métodos arquimedianos, en ambientes de la metodología de Aula Taller, donde el aprender haciendo, el uso de material tangible, el apoyo en guías de trabajo, el construir las ideas y los conceptos son, es la clave el conocimiento. Esto lo compartiremos con los maestros a través del estudio de los cuerpos redondos y las ideas de flotación de los cuerpos. Cabe aclarar, además que, ni la metodología ni el tema a trabajar han sido explorados en nuestro país. Es por ello que queremos compartirlo, ya que es una experiencia que hemos vivido en otros espacios y que ha tenido un buen resultado.
Resumo:
Una de las características más notables de Los Simpson es la gran cantidad de "citas eruditas" que pueden encontrarse en sus episodios: a la historia, al arte, a la religión y también a la ciencia. Gran parte de estas citas y referencias tienen que ver con la matemática y sus distintas ramas. Este trabajo describe diez de las más notables citas matemáticas del programa. Pueden usarse en clase para despertar la atención de los estudiantes al introducir ciertos temas o simplemente por su belleza e interés intrínsecos.