14 resultados para México. Ejército-Organización
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Algunos programas funcionales de formación de profesores pretenden ofrecer oportunidades para que los profesores en formación desarrollen capacidades y competencias que les permitan utilizar nociones didácticas con el propósito de analizar un tema, producir información acerca de él y utilizar esa información para diseñar, implementar y evaluar una unidad didáctica. En este trabajo, presentamos nuestra posición sobre los procesos de aprendizaje de los profesores en formación en programas de formación de carácter funcional. Nos basamos en esta posición para fundamentar las estrategias que utilizamos para organizar el aprendizaje en un programa concreto de formación de profesores de matemáticas en ejercicio de educación básica secundaria y educación media en Colombia.
Resumo:
Que la educación por sí misma es una actividad cooperativa, es una afirmación que hasta los propios estudiantes reconocen en sus mejores experiencias educativas en un marco pleno de cooperación, y con la guía adecuada. Como orientación para el desarrollo de actividades en el marco del aprendizaje cooperativo, la organización y esquematización de prescripciones, la identificación de los procesos de aprendizaje, con la correspondiente función de la enseñanza y la orientación para el docente, es que se propone interesar al alumno por el proceso y por los resultados. Para la etapa de aprestamiento como actividad inicial se pensó en una obra cinematográfica: La habitación de Fermat.
Resumo:
En la presente investigación se problematiza la organización de saberes matemáticos asociados a contenidos del Precálculo desde una perspectiva socioepistemológica, en la que se asume que los procesos de construcción, difusión e institucionalización de conocimiento se corresponden con un contexto específico. Por ende se analizaron variables socioculturales de contexto asociadas al uso y construcción de conocimiento matemático en ámbitos no escolares y en el escenario escolar. En éstos se reconoció el papel de la práctica, la dimensión social de la matemática y la actividad humana como condiciones socioculturales para la reorganización y construcción de saberes matemáticos en Precálculo.
Resumo:
El presente trabajo de investigación tiene por objetivo la obtención de indicadores para la organización de saberes matemáticos correspondientes al área de Precálculo, Geometría y Álgebra de nivel medio. Para la consecución de éste, se realiza en primera instancia un estudio documental el cual permitiera generar un estado del arte de propuestas didácticas generadas en Matemática Educativa en la última década, seguido de un estudio descriptivo cuyo objetivo es identificar aquellos elementos que caracterizan las propuestas como favorecedores de la construcción del conocimiento matemático. Particularmente nos centraremos en los resultados obtenidos al momento en el área de Precálculo, entre los cuales se tiene que las propuestas didácticas parecen tener en común el que la construcción del conocimiento se dé a través de la práctica humana y el carácter científico de los conocimientos matemáticos, como son: la predicción, la visualización y la modelación. La tecnología ya no es un recurso para el profesor sino una herramienta para el estudiante.
Resumo:
Con el objetivo de integrar la diversidad en el aula, a nivel mundial se reconoce ampliamente la importancia de dar respuesta a las necesidades de un grupo muy especial de la población, aquellos estudiantes que destacan de alguna forma dentro del contexto escolar. En México estos estudiantes están considerados dentro de la población con necesidades educativas especiales y requieren de una atención educativa especial de tal forma que puedan desarrollar al máximo sus capacidades.
Resumo:
Los mapas conceptuales se pueden emplear como una técnica de estudio y como una herramienta para el proceso de enseñanza y aprendizaje de las matemáticas, permitiendo al docente explorar los conocimientos previos que sus estudiantes tienen frente a un tema específico, favoreciendo la construcción de relaciones y organización de conceptos, fomentando la reflexión, el análisis y la creatividad. La implementación de los mapas conceptuales en investigaciones relacionadas con el aprendizaje y la enseñanza de las matemáticas, han mostrado que éstos ponen de manifiesto los procesos de razonamiento seguidos por el estudiante, evidenciando las conexiones entre los conceptos matemáticos que pueden dar lugar a proposiciones válidas o no válidas y a diferentes niveles jerárquicos, que a su vez, proporcionan una visión sobre el nivel de comprensión que poseen, tanto profesores como estudiantes, en dichos conceptos.
Resumo:
Diferentes corrientes teóricas han intentado conocer cuáles son los factores que inciden en los procesos educativos, cuál es su relevancia y cómo podrían ser modificadas con la finalidad de obtener una mejor calidad en la educación. Fortalecer esta corriente de investigación en México es imprescindible. El objetivo de este trabajo es, identificar factores individuales, familiares y escolares incidentes en el nivel de logro académico en matemáticas de estudiantes de tercer año de secundaria. Se analizaran los resultados del examen de matemáticas propuesto por la Evaluación Nacional de Logro Académico en Centros Escolares (ENLACE). También se estudiaran los resultados de los cuestionarios de contexto que se aplicaron a una muestra representativa de estudiantes a sus profesores y a sus padres. Para ello se hará uso de Minería de Datos con el objetivo de encontrar relaciones ocultas entre las variables, sacar conclusiones y generar conocimiento a partir de estas.
Resumo:
El estudio de la primera representación adquiere un papel determinante en la actividad de la resolución de problemas, ya que se presenta entre la percepción del problema y el proceso de resolución. El presente trabajo, plantea la posibilidad de desarrollar la formulación de problemas para enriquecer el contenido de la primera representación, permitiendo explorar nuevas representaciones para identificar la organización de sus relaciones y establecer su articulación en problemas contextualizados.
Resumo:
En este trabajo presentamos una caracterización del currículo matemático de nivel medio en el Estado de Yucatán, en tanto su estructura y la orientación de sus componentes con el fin de dar indicios sobre la planificación, qué matemáticas estudiar y cómo hacerlo. Este estudio se basó, entonces, en un análisis de su evolución y de la identificación de las incongruencias e inconsistencias, en cuanto a aspectos como organización y estructura que se plantean en los planes y programas de matemáticas de bachillerato.
Resumo:
La presente investigación surge en el programa “perfeccionamiento en matemática para profesores de enseñanza media” realizado en el IUFM le Mirail, Universidad de Toulouse, Francia. El estudio consiste en el diseño de una propuesta didáctica para el aprendizaje de la ecuación vectorial de una recta en el espacio, en estudiantes de 16 a 18 años, el interés nace por la incorporación de estos temas en el curriculum nacional. Para el diseño de la propuesta se utiliza elementos de la Teoría Antropológica de lo Didáctico (TAD), donde se entenderá como organización matemática, a un conjunto de tipos de tareas, de técnicas o procedimientos para resolver estas tareas y de definiciones, propiedades y teoremas que permitan describir y justificar la resolución de la tarea. Entre los elementos que aportan en el surgimiento de la organización matemática, se distinguen, tipos de tareas como, establecer si puntos del plano o el espacio son colineales y determinar las condiciones para que un tercer punto sea colineal a dos puntos dados, en el plano o en el espacio.
Resumo:
Este trabajo es parte de una investigación que estudia prácticas de modelación en diversos escenarios con la intención de analizar las herramientas que surgen en este proceso. Se reportan experiencias con estudiantes, de nivel medio superior y superior de México y Chile, respectivamente, que participaron en puestas en escena de un diseño de aprendizaje basado en la modelación lineal. Sus producciones muestran argumentos, herramientas y procedimientos que utilizan al modelar, su análisis presenta invariantes y particularidades que exhiben el rol del estudiante en cada escenario. El trabajo se enmarca en la socioepistemología como perspectiva teórica.
Resumo:
Este reporte trata de una investigación cooperativa cuyo tema es la comparación de la enseñanza de la geometría en Chile y en Francia (proyecto ECOS-CONYCIT). Después de definir nuestra metodología por zooms sucesivos, presentamos las mayores diferencias que encontramos entre los dos países. Estas diferencias conciernen a los ámbitos siguientes: la concepción de la geometría, los aspectos de la actividad matemática puestos en evidencia, la organización del aprendizaje, la extensión de los programas, la importancia dada a las aplicaciones de matemáticas y a la modelación. Los trabajos de C.Houdement y A.Kuzniak sobre los paradigmas geométricos nos permiten analizar las concepciones de la geometría.
Resumo:
El rol del aprendizaje significativo mediante la utilización de nuevas estrategias de enseñanza. Este aprendizaje involucra un proceso en el que lo que aprendemos es el producto de la información nueva, interpretada a la luz de lo que ya sabemos. Para que haya aprendizaje significativo, es necesario que el alumno pueda relacionar el material de aprendizaje con la estructura de conocimientos de que ya dispone. De esta forma, junto con la motivación favorable para la comprensión, y, los esfuerzos que requiere, una condición esencial del aprendizaje de conceptos será que estos se relacionen con los conocimientos previos de los alumnos. El nuevo conocimiento, que queremos que el alumno aprenda en esta oportunidad, surgirá de un adecuado desarrollo del razonamiento deductivo y manejo de los conocimientos previos. Entendiendo por razonamiento deductivo al proceso de razonamiento en que, para obtener una conclusión lógicamente necesaria a partir de ciertas premisas, los pasos están encadenados siguiendo ciertas reglas lógicas y son justificados rigurosamente. Las justificaciones están basadas en los axiomas y definiciones de la teoría respectiva, en teoremas demostrados con anterioridad y en las premisas o hipótesis del problema o teorema. El docente debe ayudar al estudiante a desarrollar y usar el poder del razonamiento deductivo comprometiéndolo permanentemente a pensar, analizar y deducir conjeturas en clase, además debe crear y seleccionar tareas apropiadas que puedan involucrar la generalización, la organización de datos para validar o refutar una conjetura. Un grupo de bachillerato del último año desarrolló la demostración de un teorema de convergencia de series, con los resultados de un 46% que la realizó exitosamente, versus un 36% que no lo logró. Los alumnos que lograron hacer la demostración, no eran los más estudiosos pero tenían una buena capacidad de razonamiento. En cambio los que generalmente preparan las evaluaciones y que se apoyan mucho en la memoria, no lograron un buen desempeño.
Resumo:
En contra de lo que algunos creen, es posible abordar con éxito muchos problemas cotidianos de probabilidad, sin más instrumentos que una mente ordenada. A partir de un sencillo juego, intentaremos demostrar el mito de que el análisis del polémico sorteo de excedentes de cupo está vedado a cualquier persona que no sea de ciencias.