97 resultados para Lógica matemática
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
O uso cada vez mais intenso de conceitos subjetivos - provenientes da lógica fuzzy - aplicados a problemas reais nos motivou a desenvolver procedimentos para a introdução destas idéias no âmbito do ensino médio. O projeto propõe inicialmente o estudo de conjuntos fuzzy que podem ser entendidos com exemplos - de variação populacional, de controle de pragas e de epidemias. Posteriormente, usar as “operações fuzzy” Sup e Inf em produtos de matrizes para realizar diagnósticos e avaliações subjetivas. As situações abordadas já estão na literatura (Barros e Bassanezi, 2006), entretanto não como fonte para o Ensino Médio. Um dos objetivos principais deste trabalho é contrapor a crença de exatidão da matemática clássica com os resultados provenientes de lógica subjetiva, utilizando conceitos apropriados para os estudantes destas séries: teoria dos conjuntos, relações e funções, matrizes, equações de diferenças e outros.
Resumo:
En este trabajo se describe una investigación en curso, en que se aborda una de las problemáticas que se presenta en los cursos de lógica o inteligencia artificial, en el tema de representación del conocimiento. Cuando se pide a los estudiantes formalizar enunciados del lenguaje común (natural) con el lenguaje de la lógica de predicados. Se describen algunos de los errores identificados con alumnos del nivel superior y se aplica la teoría de la actividad para caracterizar la habilidad de traducir enunciados del lenguaje común (natural) a fórmulas bien formadas del lenguaje de la Lógica de predicados. Se propone una base de orientación que se deben usar al resolver los problemas de formalización (traducción) que se plantean en los cursos mencionados.
Resumo:
A través de una serie de tareas desarrolladas con un sofware de geometría dinámica, buscamos propiciar la comprensión de lo que es y lo que expresa una condicional en matemáticas. Por medio de problemas propuestos, en los cuales se debe formular una conjetura, como resultado de la exploración realizada y la determinación de invariantes, se busca que los participantes del taller comprendan que las condiciones establecidas en el antecedente son sucientes para concluir el consecuente y que el consecuente es necesariamente resultado de las condiciones que se reportan en el antecedente.
Resumo:
Este documento presenta un juego o puzzle de intercambio de posiciones es aquel en el que, sobre un tablero, se encuentran posicionados dos grupos de fichas y se presenta como objetivo cambiar entre sí dichas posiciones. El cambio se ha de hacer con ciertas reglas que atañen al modo de moverse las fichas, con el fin de utilizar como recurso didáctico.
Resumo:
En el anterior artículo prometimos una segunda parte dedicada al tratamiento del juego “Salto de la Rana” en la clase. Nos toca, pues, hablar de estrategias, notaciones, desarrollos, soluciones y ampliaciones o variantes del mismo. Empezaremos por indicar algunas referencias bibliográficas más, todas ellas interesantes, y de las que hemos sacado la mayor parte de la información que hemos reunido en este artículo. Recomendamos que sean leídos, al menos aquellos más asequibles y de manera particular los de Fayos y Gracia, Corbalán, Shell Center, Cobo y Ferrero.
Resumo:
Algunos problemas nos atraen independientemente de la dificultad de su resolución. El que vamos a presentar lleva como título ¿CÓMO SE LLAMA EL PROFE? Y lo hemos encontrado en el libro de Agustín Fonseca: “El rompecocos” (Ed. Temas de Hoy).
Resumo:
Soluciones a los ejercicios propuestos en el anterior NÚMEROS, con especial incidencia en la metodología de su resolución, y propuesta de nuevos enunciados. Ejercicios de diferentes niveles y contenidos.
Resumo:
Una de las características más notables de Los Simpson es la gran cantidad de "citas eruditas" que pueden encontrarse en sus episodios: a la historia, al arte, a la religión y también a la ciencia. Gran parte de estas citas y referencias tienen que ver con la matemática y sus distintas ramas. Este trabajo describe diez de las más notables citas matemáticas del programa. Pueden usarse en clase para despertar la atención de los estudiantes al introducir ciertos temas o simplemente por su belleza e interés intrínsecos.
Resumo:
En este trabajo se pretende evidenciar, mediante experiencias de aula, que la estrategia metodológica de Resolución de Problemas planteadas por Pólya (1965), Shoenfeld (1985) y Brousseau (1986), desarrolla competencias básicas, genéricas y específicas. Los resultados muestran que las actividades de resolución de problemas planteadas promovieron la comprensión lectora, el trabajo en equipo, la capacidad de razonamiento y argumentación frente a sus compañeros/as, la capacidad lógica de reconocimiento, el descubrimiento de patrones, exploración de problemas similares, reformulación de problemas, trabajo hacia atrás, la participación activa de los estudiantes y el desarrollo de líderes (Espinoza, et al., 2008)
Resumo:
La introducción de las nuevas Tecnologías de la Información y la Comunicación (TIC) en la sociedad actual y en la Educación es hoy una realidad. En Educación se ha incorporado la tecnología multimedia como un elemento más del proceso de enseñanza-aprendizaje. En Matemáticas, existen numerosas aplicaciones informáticas diseñadas expresamente para favorecer el aprendizaje o la construcción de determinados conceptos. En este trabajo se presenta un software de geometría dinámica, el Geometricks. Tras describir el uso del software y su potencialidad en el aula, se proponen unas actividades para su uso en el aula.
Resumo:
En este artículo se presentan los resultados de un proyecto de investiga-ción sobre la comunicación entre familias y escuelas. El objetivo es co-nocer tanto los contenidos de matemáticas enseñados en la escuela, co-mo establecer puentes de diálogo entre escuelas y familias, a fin de que los estudiantes acaben mejorando su rendimiento en matemáticas. Co-menzamos con una contextualización. Luego, se presenta el estudio y la metodología utilizada. A continuación se discuten parte de los resulta-dos obtenidos, que destacan el interés de la conexión entre las familias y los centros, especialmente en los institutos. Se concluye con aportacio-nes a la formación del profesorado de matemáticas.
Resumo:
La comprensión del conocimiento matemático constituye un objeto de investigación de interés creciente en Educación Matemática. La elevada complejidad de su estudio y el considerable volumen de conocimientos sobre el tema disponible en la actualidad, justifican la pertinencia de trabajos como el que aquí se presenta, que tiene como principales propósitos delimitar, a través de la reflexión sobre distintas cuestiones abiertas fundamentales, algunos de los principales problemas actuales en torno a la investigación sobre comprensión en matemáticas y trazar, en base a ellos, posibles vías de actuación operativas.
Resumo:
El objeto de investigación del estudio que aquí se presenta es la serie de actores, factores y relaciones entre ellos que, dentro de la institución educativa y su organización en secundaria, determinan la calidad de la formación matemática que logran los estudiantes colombianos. El problema de investigación de PRIME I se concentra en el estudio de procesos asociados con la enseñanza de las matemáticas, antes de que éstos se concreticen en la interacción directa entre profesor y estudiante en el ámbito restringido del salón de clase, es decir, antes de que lleguen a generar un producto en la manera como los estudiantes construyen (o no) su conocimiento matemático. Para dar cuenta de la indagación hecha, este libro se organiza de la siguiente manera. El primer capítulo formula la problemática general que abordó el proyecto. El segundo capítulo muestra cómo se inscribe el espacio de la investigación en el marco de la literatura de la comunidad internacional de educación matemática. El tercero presenta las consideraciones conceptuales que sustentan la aproximación del proyecto a la problemática de la calidad de las matemáticas en secundaria desde la perspectiva de la insitución educativa. El cuarto capítulo expone los principios y diseño metodológicos seguidos en el proceso de investigación. En el quinto capítulo se exponen los resultados generales del proyecto en términos de lo sucedido en el Sistema Institucional de la Educación Matemática (SIEM) en los colegios participantes y de la influencia de la estrategia de desarrollo profesional realizada con ellos en sus sistemas. El último capítulo retoma una de las grandes preguntas iniciales acerca de la pertinencia del modelo del SIEM para abordar la realidad de la enseñanza de las matemáticas en los colegios colombianos y se presenta una reformulación de éste; también presenta las particularidades metodológicas del proceso de reformulación teórica del modelo del SIEM.
Resumo:
En educación matemática el razonamiento cobra especial importancia, al mismo tiempo que su uso puede conducir a opiniones contrapuestas. Entender y dominar la demostración de un resultado matemático ayuda a su comprensión, facilita su empleo en el estudio de otras proposiciones y contribuye a la consolidación de un lenguaje matemático. Pero ¿puede sacarse partido a una demostración si se desconoce qué es, qué papel juega, y dónde reside su fuerza? ¿Deben frenarse los intentos de los alumnos de justificar a su modo los resultados matemáticos, ó modelarlos y sacarles mejor rendimiento? ¿No es mejor una aproximación medianamente fundada pero entendida, que aseveraciones bien formalizadas pero sin significado? Si además se considera la aportación que las nuevas tecnologías realizan a la enseñanza, es necesario una reflexión acerca de cómo se ve afectada, si es que se altera, la forma de validar el conocimiento matemático en el aula, además de establecer cuál es el rigor y la formalidad de las justificaciones que se desarrollan con estos instrumentos. En este reporte, se realiza un acercamiento teórico a diferentes modos de justificar las proposiciones matemáticas en el aula, y al papel que desempeña la tecnología en esta tarea. También se describe una experimentación llevada a cabo con profesores de matemáticas en formación en la que se analizaron las concepciones que tenían acerca del valor educativo que posee la calculadora TI-92 para, de algún modo, validar dichas proposiciones.
Resumo:
esde el año 2004 la Licenciatura en Matemáticas, consecuente con el principio de pertinencia de la Investigación en la Universidad de Cundinamarca, emprendió acciones inmediatas orientadas a generar procesos de innovación modernizadora en la formación de docentes investigadores en Educación Matemática que contribuyeran con la construcción gradual de bases sólidas para la línea de investigación del programa10, eje articulador del proyecto curricular.