10 resultados para Griego (Clásico)

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El libro que comentamos es de apariencia sencilla, sin visos de trascendencia. Y no sólo porque no es muy extenso (215 páginas), sino por su tono coloquial, cercano y directo, y porque en ningún momento hace referencia a ningún resultado matemático que no sea conocido por cualquier profesor de matemáticas de los niveles primario y medio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

tema en el contexto educativo colombiano, llevan a que dos profesores de matemáticas de educación básica y media, se den a la tarea de diseñar y desarrollar una propuesta para la superación de sesgos en el razonamiento probabilístico de sus estudiantes. De esta manera, en el marco de la investigación-acción, se recoge la experiencia y reflexión de tres implementaciones de aula consecutivas: La primera con estudiantes de grado décimo, cuyo énfasis estuvo dado en el enfoque clásico de probabilidad, que llevó a que los estudiantes no tuvieran cambios significativos en sus argumentaciones respecto a los fenómenos de probabilidad; la segunda con estudiantes de grado séptimo, donde el enfoque fue netamente experimental, convirtiéndose en un obstáculo para desarrollar procesos de institucionalización del saber, que permitieran a los estudiantes formalizar algunos conceptos. Las reflexiones suscintas a esta experiencia llevaron al desarrollo de una tercera, también con estudiantes de grado séptimo, pero en otra institución, donde se construyó de manera conjunta y horizontal con los estudiantes una situación problema abierta a los dos enfoques de probabilidad (clásico y experimental) que permitió desarrollar las actividades de acuerdo al avance de cada grupo en el proceso de resolución. De ésta manera se contribuyó en forma significativa a la superación de sesgos probabilísticos, y se consolidó para nosotros un instrumento modelo para la enseñanza de las matemáticas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La siguiente es una propuesta didáctica para la enseñanza- aprendizaje de la probabilidad clásica en el ámbito escolar. El trabajo se desarrolló con estudiantes de grado octavo, haciendo uso de un problema clásico de la probabilidad, propuesto en el siglo XVII por el Príncipe de Toscana a Galileo Galilei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las clases de matemáticas no debieran tener como objetivo fundamental el aprendizaje de contenidos (definiciones, teoremas, axiomas…) que posteriormente serán aplicados a la resolución de un gran listado de ejercicios y problemas propuestos por el profesor y que justificará el aprendizaje de dichos contenidos, sino que, por el contrario, debieran partir con un problema concreto y familiar para el alumno. Una vez planteado éste y discutido por todos, estudiantes y profesor, traerá como consecuencia la obligación de resolverlo y por tanto la necesidad del aprendizaje de las técnicas que son necesarias para ello y recurrir al uso de tecnología disponible. Es muy importante destacar que durante todo el proceso el alumno hace conjeturas que irá verificando en cada paso. Se dará cuenta que algunas de las conjeturas que hizo son correctas y que otras no lo son, es decir, cometerá errores y aciertos, en función de los cuales irá cimentando su aprendizaje. Pero, por sobre todo, debe aprender que “va al colegio a equivocarse”, pero que no debe quedarse en el error, que en la discusión con sus compañeros y el profesorado encontrará la(s) solucione(s), que es probable que más de una sirva, pero que también unas son mejores que otras, que en algunos casos hay una solución óptima, en definitiva irá “aprendiendo a aprender”. Se ilustra lo anterior planteando resolver un clásico problema de construcción de cajas utilizando como herramienta de aprendizaje el software DERIVE 5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Con el propósito de promover razonamiento probabilístico bajo los enfoques intuitivo, clásico y frecuencial en estudiantes de grado undécimo sin instrucción previa en probabilidad, se realizó un análisis didáctico para proponer la implementación de un conjunto de tareas que permitan el avance en dicho razonamiento. A partir de dicho análisis se establecen una serie de capacidades, errores y dificultades que perfilan una posible ruta de instrucción y que delinean como aporte de esta ponencia una propuesta de instrucción que incluye situaciones asociadas a juegos de tablero, laberintos, aparato de Galton y carreras de juegos electrónicos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las matemáticas y la pintura trabajan con ideas. La palabra idea viene del griego ειδω, que significa ver, mirar u observar, y de ειδοζ, que significa figura, forma, aspecto o visión. Detrás de una montaña concreta está la idea de montaña, un dibujo abstracto, unas líneas que permiten reconocer la montaña detrás de las rocas, los pinos o la nieve. La diferencia entre este árbol y árbol, entre un círculo que dibujamos en la pizarra y círculo: la diferencia entre la cosa y la idea de la cosa. En matemáticas y en pintura se buscan las ideas de las cosas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo nos proponemos abordar un problema clásico: la división de un segmento en media y extrema razón. Nuestro interés se centra en ilustrar, con un ejemplo sencillo, los sucesivos pasos a la hora de interpretar una magnitud: primero como una longitud, un área o un volumen; después como un segmento; y, por último, como un número. Evolución que refleja el proceso de creación de la geometría analítica. Por otro lado, estos tres periodos coinciden con las tres fases por las que pasa una disciplina matemática: ingenua, formal (en la que se perfecciona el cálculo simbólico) y una fase crítica (en la que se revisan los fundamentos).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El título corresponde a una cita de M. Morse que elogiaba de esa forma la aparición del libro el año 1941. En la contraportada de la edición española se recogen unas palabras de A. Einstein acerca de esta obra: «Una acertada exposición de los conceptos y métodos funda- mentales de la matemática. Constituye una introducción que puede leer sin dificultad el profano, en tanto que al iniciado en matemáticas le ofrece un panorama general de sus métodos y principios básicos». No son las únicas personalidades que hablan de ¿Qué es la matemática? en términos elogiosos. El Courant/Robbíns, como se le suele nombrar coloquialmente, se ha convertido en poco tiempo en un clásico entre las obras de introducción al pensamiento y métodos de las matemáticas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este libro es un clásico de largo recorrido, con muchas ediciones, de las que hemos indicado tres representativas: lo 1° por razones obvias, la 14° porque es la última compuesta en vida del autor; que falleció un año después, y la 5° por ser la inmediata anterior a la guerra civil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La génesis de este artículo fue la experiencia realizada con (y por) nuestros alumnos para que conocieran el procedimiento seguido por Eratóstenes para medir el radio de la Tierra y lo repitiesen. Es decir, un primer y claro objetivo de la experiencia era que los alumnos aprendieran un método clásico e ilustrativo de la rigurosidad e ingenio científicos; sin embargo, también nos planteamos un segundo objetivo que, a nuestro entender, es mucho más interesante y formativo: ver cómo los alumnos eran capaces de investigar por su cuenta con unas pocas indicaciones, con el fin de conocerlos mejor y tratar de fomentar las capacidades especificas de cada uno.