13 resultados para Enseñanza de las ciencias naturales

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este documento es una síntesis de una propuesta didáctica para modelar estadísticamente, errores de medición en las ciencias naturales. El origen de este trabajo fue motivado por cuatro cuestiones: la primera es la enseñanza del error como requisito para el currículo, los estándares curriculares establecen que un error es un punto en uno de los caminos hacia la verdad y, cada punto en ese camino, es un error de mayor o menor magnitud. Se vive en un mundo lleno de incertidumbres donde a nivel físico no existen verdades absolutas, por tanto, se vive con el error permanentemente, la segunda es la escasez de recursos didácticos para atender la enseñanza de error de medición en el aula teniendo en cuenta la revisión bibliográfica realizada, la tercera es el manejo interdisciplinar que se le puede dar al error de medición en el aula, y por último, es el uso de herramientas tecnológicas para el desarrollo de modelos o representaciones visuales acerca de éste tema en el aula, la importancia del error de medición en las ciencias y el tratamiento estadístico del error de medición en el aula, como instrumento para evaluar de forma cuantitativa la precisión y exactitud de los resultados obtenidos a partir de procesos experimentales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La propuesta que hoy presentamos, es el resultado de varios años de implementación del proyecto liderado por el Ministerio de Educación, las Universidades y algunas Secretarías de Educación, conocido como Incorporación de Nuevas Tecnologías al Currículo de las Matemáticas de la Educación Básica y Media de Colombia con la mediación de los Software Interactivos como Cabri y los accesorios externos como sensores para toma de datos. Al definir el objeto de las matemáticas, encontramos que su aprendizaje no sólo se basa en formar el espíritu lógico, sino también proporcionar herramientas para la solución de problemas reales. Por lo tanto, se debe combinar el rigor lógico con la funcionalidad, puesto que además de la lógica formal las matemáticas proporcionan también un poderoso conjunto de herramientas que posibilitan describir, explicar, predecir y modelar situaciones no sólo del mundo científico, sino también de la vida cotidiana (significación). Es por esto, que juega un papel importante implementar en su didáctica, el referirla al mundo de la naturaleza, de las otras ciencias (interdisciplinariedad), y de la cotidianidad del hombre. Es fácil ver los nexos que tienen las Ciencias Naturales con el mundo extraescolar, lo que permite construir el conocimiento a partir de proyectos en donde se manipule en forma directa el mundo real. Las temáticas que se trabajan en esta propuesta además de permitir lo anterior, proporcionan el estudio formal de las matemáticas y el desarrollo de sus diferentes pensamientos. Los ejes temáticos trabajados son: Cinemática, Luz, Electricidad, Calor y Energía y propiedades químicas de las sustancias, entre otras.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Con la presente comunicación se pretende describir y analizar una experiencia de Modelación llevada a cabo con alumnas de 16-17 años. En ésta, se exponen brevemente: etapas seguidas, temas escogidos por las alumnas, descripción y análisis de un trabajo de problem posing y otro de Modelación propiamente dicha. Es de destacar el interés que en general mostró este grupo de alumnas por temas centrados en el estudio de la dinámica poblacional de diversas especies, fenómeno que se manifestó en ambas actividades. Finalmente se presentan un análisis y discusión de algunas observaciones de la implementación en aula.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los últimos informes PISA sitúan a nuestros alumnos de la ESO a mucha distancia de los países desarrollados de la OCDE en lectura, escritura y matemáticas. En mi opinión, estos resultados son reflejo de una falta de motivación y de una actitud inadecuada hacia nuestra asignatura, que hace necesario, como profesores de matemáticas, plantearnos cuestiones relacionadas con qué enseñar y cómo enseñarlo. Además, el nuevo enfoque educativo basado en Competencias Básicas supone un cambio de gran magnitud en todos los aspectos del currículo, y en especial, en la metodología. Esto hace que el método de Aprendizaje basado en Proyectos adquiera un papel relevante al fomentar procesos reflexivos y de investigación, promover la autonomía del alumnado, el trabajo cooperativo y el uso de las TIC, además de mostrar la implicación de las matemáticas en el mundo que les rodea y en otras ciencias. Este trabajo de investigación elaborado para el presente curso 2012/2013, y en él se pretende poner en práctica este modelo de enseñanza-aprendizaje para valorar sus implicaciones en las actitudes del alumnado hacia las matemáticas y en relación con la adquisición de Competencias Básicas como las de Aprender a Aprender y Autonomía e Iniciativa Personal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La incorporación en la vida cotidiana de las nuevas tecnologías de la información y la comunicación ha significado un cambio radical en la forma de desarrollar el proceso de enseñanza y aprendizaje en las diferentes disciplinas y niveles escolares. En este sentido, el software de geometría dinámica “Cabri Géomètre II Plus” es un programa computacional de fácil manipulación, amigable y de rápido aprendizaje, que permite a los estudiantes visualizar, descubrir, conjeturar y/o comprobar propiedades que se deseen trabajar. El presente artículo tiene como finalidad mostrar actividades en el tema de transformaciones isométricas y que se pueden desarrollar con el uso de Cabri II Plus, y que permiten el desarrollo del pensamiento geométrico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este trabajo se reportan los resultados obtenidos en un estudio de tendencias realizado sobre el currículo escolar mexicano de ciencias naturales y exactas en el nivel educativo medio. Para la realización de este estudio se utilizó una metodología documental acompañado de entrevistas estructuradas a expertos en materia curricular. El propósito fue caracterizar los diferentes momentos por los que ha transitado el currículo en las últimas cuatro décadas y establecer posibles directrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finales del siglo XVIII, en Europa el conocimiento científico se había desarrollado extraordinariamente. Surgen los nombres de Lavoisier, Ritcher, Coulomb y Celsius entre otros muchos. Se enuncian leyes en química y física; junto a ellas también florece la matemática de la mano de Euler, Lagrange, D«Alambert, Monge, por citar sólo unos cuantos. Mientras tanto, el atraso de las matemáticas españolas se debía, entre otras causas, al pobre estado en que se encontraban las universidades: aún de tipo medieval y de carácter eclesiástico. Esto lo evidencia Fray Benito Jerónimo Feijoo en la carta titulada Causas del atraso que se padece en España en orden a las ciencias naturales, y el Marqués de la Ensenada quien, en 1748, se lo expresa al rey Fernando VI. Las deficiencias de las universidades tenían que ver con la enseñanza memorística, textos anticuados e interés primordial por disciplinas como derecho, teología y filosofía en detrimento de las matemáticas y las ciencias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este trabajo establecemos la siguiente hipótesis: el sistema conjeturas-pruebas-refutaciones constituye la lógica del descubrimiento matemático escolar; bien entendido que en las matemáticas de la enseñanza secundaria el énfasis no puede situarse en la frontera móvil que Lakatos (1978) ha señalado en el trabajo de los matemáticos profesionales, esto es, la frontera demostraciones/refutaciones sino más bien en la frontera anterior, conjeturas/demostraciones. Dicho sistema supera didácticamente al enfoque unidimensional de demostración como prueba formalizada, enfoque tradicional del estilo deductivista en la enseñanza de las matemáticas. Esta hipótesis surge del análisis de las dificultades epistemológicas, cognitivas y didácticas del concepto de demostración (en particular, de la demostración por reducción al absurdo) y de la revisión de algunos estudios experimentales sobre la práctica escolar de la demostración.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En esta investigación pretendemos obtener una mayor información relativa al conocimiento de los profesores de matemáticas, en particular, al conocimiento del contenido y estudiantes (KCS, por sus siglas en inglés –Knowledge of Content and Student ) mientras éstos se encuentran inmersos en su propia práctica. Nos enfocamos en un modelo del conocimiento matemático para la enseñanza (MKT, por sus siglas en inglés – Mathematical Knowledge for Teaching ). Es un estudio de 2 casos, los instrumentos de recogida de información son: observación de aula, cuestionarios y entrevistas a los dos casos. Finalmente, aportamos distintos indicadores del KCS que pueden ser considerados para identificar y comprender el KCS, éstos pueden ayudar a analizar a otros profesores o ser considerados en la formación del profesorado de bachillerato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El cálculo diferencial e integral, es materia obligada en gran parte del currículo escolar y piedra angular en el desarrollo de la matemática. A pesar de ello en escuelas tanto a nivel medio como superior, los reportes de problemas en su enseñanza aprendizaje son frecuentes. Esta materia presenta un alto índice de reprobación, inclusive con alumnos que recursan. Este estudio muestra una fuerte tendencia, en la educación, a visualizar el cálculo como un patrón de fórmulas y procedimientos algebraicos, dejando fuera los aspectos conceptuales. En el mismo sentido Dreyfus (1990, 124), reporta que las investigaciones en Francia exhiben la tendencia de los estudiantes a los aspectos de procedimiento algorítmicos, dejando fuera los conceptuales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El presente trabajo plantea el estudio del conocimiento matemático de la cultura maya desde la aproximación socioepistemológica, ya que se aporta una visión diferente de las que suelen abordarse en la literatura: antropológica o etnográfica entre otras. Se plantea el estudio de prácticas sociales que se encuentran en la cultura maya y que son a la vez generadoras de conocimiento matemático.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La matemática en el contexto de las ciencias es una línea de investigación que reflexiona acerca de la vinculación que debe existir entre la matemática y las ciencias que la requieren, está constituida por cuatro fases: la curricular, la didáctica, la epistemológica y la cognitiva. En este artículo se presenta la fase didáctica. Esta fase incluye una estrategia didáctica (denominada matemática en contexto)que presenta conocimientos integrados a los alumnos a partir de una situación problémica de otras disciplinas, que al tratar de resolverla el estudiante se encuentra con la necesidad de tener nuevos conocimientos, lo cual da apertura a que el estudiante esté interesado en otros tópicos matemáticos. Para lograr la vinculación de la matemática con otras ciencias se describe un proceso metodológico a través de seis de las etapas de la matemática en contexto. Con esta estrategia el modelar matemáticamente está presente todo el tiempo, por lo que se presentan los resultados de una investigación que caracteriza y clasifica a los modelos matemáticos. Asimismo, los modelos son un elemento común a la matemática en contexto y a la resolución de problemas, por lo que se muestran las diferencias sustancias entre ambas estrategias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta propuesta metodológica, nace como producto de la tesis de maestría de uno de los ponentes, en ella se intenta mostrar una forma de enseñar las secciones cónicas en un ambiente didáctico que se basa en que el estudiante aprenda haciendo. Por ello, se presentan actividades para que el estudiante explore y descubra características de las figuras que él construirá y, en diálogo con sus compañeros y el docente, construya su propio conocimiento. Para lograr este proceso se empleó como referente teórico el modelo de Van-Hiele el cual se caracteriza al tener dos secciones, una de las cuales es descriptiva, en ella se observan niveles de razonamiento. La otra parte nos da a los maestros las pautas para que nuestros estudiantes avancen de un nivel a otro, estas pautas se conocen como fases de aprendizaje.