14 resultados para Enfoques cualitativos
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En el campo de la investigación en educación matemática los cambios que en la enseñanza en general se han venido produciendo en los últimos tiempos, se manifiestan al asumir nuevos esquemas investigativos sustentados en una visión fenomenológica (Martínez 1997, 1999) del hecho educativo que comporta a su vez, nuevas formas de abordar el proceso de enseñanza y aprendizaje de la matemática bajo una concepción más comprensiva e integradora, donde hay más cabida para la pregunta, para el cuestionamiento, que para las certezas o la certidumbre. En esta comunicación revisamos las propuestas de Kilpatrick y Sierspinka (1996) y de González (2000), para la conformación de una agenda de investigación en educación matemática, orientándolas a la luz de las nuevas consideraciones teóricas–metodológicas que emergen en estos tiempos postmodernos. Asimismo, se plantea la necesidad de revisar los postgrados en Educación Matemática a fin de convertirlos en espacios para la reflexión, para la discusión y para la confrontación de saberes, propiciando la consolidación del binomio formación–investigación a través de la implementación de currículo menos escolarizados y más dirigidos a la práctica investigativa (Becerra, 2001). Por último, abogamos por la investigación sobre la enseñanza y el aprendizaje de la matemática, realizada por los profesores de matemática, en el propio entorno escolar siguiendo las utopías y renovaciones de Alcina (1998) y las concepciones epistemológicos, pedagógicos y didácticos que en la actualidad dirigen las actividades educativas (Gallegos Badillo y Pérez Miranda, 1991), enfocándolas a la enseñanza de la matemática.
Resumo:
La comprensión del conocimiento matemático constituye un objeto de investigación de interés creciente en Educación Matemática. No obstante, su elevada complejidad hace que los avances más recientes aún resulten insuficientes y reclama la necesidad de ir adoptando enfoques más operativos y menos preocupados por el estudio directo de sus aspectos internos. En tal sentido, se presentan aquí las bases de una aproximación centrada en los efectos observables de la comprensión, que utiliza el análisis de comportamientos y respuestas adaptadas a situaciones expresamente planificadas derivadas del análisis fenómeno-epistemológico del conocimiento matemático. La operatividad de la propuesta se ilustra con el estudio realizado sobre el algoritmo estándar escrito para la multiplicación de números naturales.
Resumo:
Este artículo presenta los resultados de un estudio sobre las tradiciones de enseñanza en cuatro países europeos: Bélgica (Flandes), Inglaterra, Hungría y España. Se trata de un estudio a pequeña escala en el que se emplean métodos cuantitativos y cualitativos, y que, en lugar de pretender obtener generalizaciones, está orientado a arrojar alguna luz que posibilite la mejora de la enseñanza y el aprendizaje de las matemáticas. Establece comparaciones con los resultados de los test TIMSS y PISA y extrae alguna conclusión para la formación inicial de maestros y profesores de matemáticas. Extraemos de éste los resultados relativos a los datos cuantitativos y nos centramos en el foco matemático.
Resumo:
La enseñanza-aprendizaje de los objetos básicos del Análisis Matemático, en el nivel de Bachillerato y específicamente los fenómenos didácticos que emergen a lo largo del proceso de instrucción, ha constituido una problemática de investigación, en cuanto a los fenómenos didácticos que emergen a lo largo del proceso de instrucción, hoy vigente y en desarrollo. Tal y como indica Artigue (1998), para avanzar en la investigación han de efectuarse propuestas ligadas a enfoques de tipo ecológico y semiótico, donde las técnicas de reconstrucción del conocimiento matemático den explicaciones sólidas a tales problemas. En este trabajo, que se centra en el objeto: límite, tratamos de aportar una nueva visión del problema centrados en el objeto límite, por medio de un enfoque ontológico-semiótico de la cognición matemática (Godino, 2002).
Resumo:
El trabajo tiene como objetivo mostrar la forma y los resultados de aplicar tres estrategias cognitivas en la enseñanza de conceptos matemáticos y cómo estas posibilidades de enseñanza mejoran los niveles de razonamiento matemático y por ende las posibilidades de racionalizar problemas de las matemáticas, de otras ciencias y de la vida cotidiana. Presenta el marco teórico teniendo como base para este el cognitivismo como base del desarrollo del pensamiento y los enfoques cubano de la elaboración de conceptos, la enseñanza para la comprensión y la pedagogía conceptual. El razonamiento se ha definido como el desarrollo de los procesos de pensamiento aplicados a problemas matemáticos y los conceptos como construcciones abstractas de los sujetos. Se muestran las tres intervenciones realizadas en la Institución Educativa Normal Superior de Medellín de manera general, en uno de los dos conceptos trabajados. Los resultados permiten determinar que el mejoramiento del razonamiento matemático puede ser mejorado si las formas de trabajo en el aula están acordes con la manera como se define la forma en que los estudiantes aprenden. La ponencia es un acercamiento a un tema de interés para la investigación, el mejoramiento de la calidad en el pensar de nuestros estudiantes.
Resumo:
tema en el contexto educativo colombiano, llevan a que dos profesores de matemáticas de educación básica y media, se den a la tarea de diseñar y desarrollar una propuesta para la superación de sesgos en el razonamiento probabilístico de sus estudiantes. De esta manera, en el marco de la investigación-acción, se recoge la experiencia y reflexión de tres implementaciones de aula consecutivas: La primera con estudiantes de grado décimo, cuyo énfasis estuvo dado en el enfoque clásico de probabilidad, que llevó a que los estudiantes no tuvieran cambios significativos en sus argumentaciones respecto a los fenómenos de probabilidad; la segunda con estudiantes de grado séptimo, donde el enfoque fue netamente experimental, convirtiéndose en un obstáculo para desarrollar procesos de institucionalización del saber, que permitieran a los estudiantes formalizar algunos conceptos. Las reflexiones suscintas a esta experiencia llevaron al desarrollo de una tercera, también con estudiantes de grado séptimo, pero en otra institución, donde se construyó de manera conjunta y horizontal con los estudiantes una situación problema abierta a los dos enfoques de probabilidad (clásico y experimental) que permitió desarrollar las actividades de acuerdo al avance de cada grupo en el proceso de resolución. De ésta manera se contribuyó en forma significativa a la superación de sesgos probabilísticos, y se consolidó para nosotros un instrumento modelo para la enseñanza de las matemáticas.
Resumo:
Este artigo apresenta resultados parciais de uma investigação de doutorado referente à busca de temas adequados aos interesses dos alunos, que estejam em sintonia com a vida moderna e que possibilitem desenvolver conteúdos matemáticos para o Currículo de Matemática, no Ensino Médio. Apresenta-se a história desta etapa da Educação Básica, no Brasil, visando uma compreensão do todo que possibilite identificar temas já trabalhados ou desenvolvidos no Currículo de Matemática. O objetivo desta pesquisa é investigar quais seriam os possíveis temas a serem trabalhados, no Ensino Médio, que alie conteúdos matemáticos e temas de interesse. A metodologia de pesquisa apresenta uma abordagem qualitativa, pois permite que o pesquisador valide a pesquisa através da análise e descrição dos dados coletados pelo pesquisador. Um exemplo de tema a ser explorado, é a Criptografia, pois permite desenvolver conceitos matemáticos em atividades de codificação e decodificação, proporcionando o trabalho em grupo, a criação de estratégias de resolução de situações problemas e a recontextualização dos conteúdos envolvidos no tema abordado.
Resumo:
El objetivo de este trabajo de investigación es identificar las organizaciones praxeológicas que permiten la articulación de la noción de función afín con otras nociones tanto en el contexto matemático como extramatemático en la Educación Media en Brasil. Los análisis se apoyan en la Teoría Antropológica de lo didáctico de Chevallard (2001) y los enfoques teóricos en términos de marcos definidos por Douady (1992) y niveles de conocimiento que se esperan de los estudiantes según la definición de Robert (1997). Tres libros de texto que fueron analizados darán una visión general de las relaciones institucionales que sobreviven actualmente en Brasil. Observamos la existencia de diferentes formas de articulación que dependen de las técnicas desarrolladas, necesitando la atención de profesores que deben proponer el mayor número posible de situaciones para que sus estudiantes puedan aplicar la noción de función afín en diferentes tareas, sean ellas escolares o no.
Resumo:
El presente trabajo plantea la posibilidad de impulsar la Interpretación Global, en diversas representaciones para desarrollar tratamientos que permitan fomentar la exploración de sus contenidos. La experiencia se llevó a cabo con alumnos que cursaban la asignatura de álgebra del nivel medio superior, cuyo objetivo fue identificar las conjeturas y procesos cognitivos que el alumno desarrolla cuando se ha tenido la vivencia de explorar tratamientos cualitativos y cuantitativos en múltiples representaciones. Los resultados muestran la identificación de patrones cuando se plantean situaciones familiares en el alumno, así como el anclaje del contexto para algunos estudiantes y la descontextualización para otros.
Resumo:
En el presente artículo se reportan los resultados de una investigación que clasifica las conceptualizaciones que tienen estudiantes de primer ingreso universitarios de Costa Rica en temas de geometría y sistemas de ecuaciones mediante el modelo SOLO Taxonómico. Este modelo categoriza la actividad mental que realizan los sujetos cuando se enfrentan a una tarea escolar, considerando aspectos cuantitativos y cualitativos. Inicialmente los estudiantes se ubican en los primeros niveles de razonamiento en los temas de geometría y en niveles intermedios en sistemas de ecuaciones, al final los estudiantes mostraron mejoría después de un curso introductorio de matemáticas.
Resumo:
Este artículo muestra los resultados de una actividad escolar con estudiantes del Nivel Medio Superior. La actividad se llevó a cabo en el curso de Geometría y Trigonometría. El objetivo principal de esta investigación es hacer una reflexión acerca de las diferencias entre la definición de un concepto y la imagen conceptual que los estudiantes tienen acerca de ese objeto. Así como también analizar las posibles implicaciones que esa diferencia podría generar en el entendimiento de los estudiantes de los conceptos matemáticos.
Resumo:
En este trabajo se ofrece un estudio acerca de las desigualdades a partir de las prácticas didácticas del profesor. La investigación –que se coloca bajo el marco teórico de la socioepistemología– pretende ofrecer herramientas de ayuda que permitan encontrar enfoques metodológicos y soportes didácticos para los maestros, a fin de apoyarlos en su quehacer cotidiano. En esta etapa de la investigación hemos elaborado un primer instrumento didáctico que queremos proponer a un conjunto de maestros de nivel medio-superior para estudiar su postura frente de nuestra propuesta a fin de: darnos cuenta de cuáles son los elementos que más propician una resistencia al cambio del quehacer didáctico; verificar la factibilidad de nuestra propuesta.
Resumo:
Con el propósito de promover razonamiento probabilístico bajo los enfoques intuitivo, clásico y frecuencial en estudiantes de grado undécimo sin instrucción previa en probabilidad, se realizó un análisis didáctico para proponer la implementación de un conjunto de tareas que permitan el avance en dicho razonamiento. A partir de dicho análisis se establecen una serie de capacidades, errores y dificultades que perfilan una posible ruta de instrucción y que delinean como aporte de esta ponencia una propuesta de instrucción que incluye situaciones asociadas a juegos de tablero, laberintos, aparato de Galton y carreras de juegos electrónicos.
Resumo:
Hemos desarrollado el algoritmo usual de clasificación jerárquica ascendente en el sistema Mathematica. El usuario escoge la disimilitud según el tipo de datos que deba analizar: cuantitativos, cualitativos o binarios, así como el índice de agregación a utilizar. Se dispone de varias opciones para cada escogencia. Además, se ha implementado un gran número de manipulaciones sobre el árbol binario de clasificación, como el corte del árbol, la rotaciones, la dimensionalidad, el etiquetado, los colores, etc.