10 resultados para El error gay

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Con la propuesta, en mi clase se vale “meter la pata”, pretendo desarrollar en los estudiantes las competencias matemáticas y ciudadanas, a través de la participación activa al interior de las clases. Para ello, parto de dos premisas: (a) el error como una oportunidad para generar conocimiento y (b) las preguntas como el medio para lograr llegar a conceptos claros y argumentos válidos en relación con el objeto matemático que se estudia. Desarrollo la propuesta a partir de tres tareas diseñadas en la unidad didáctica Razones trigonométricas vistas a través de múltiples lentes que se fundamenta en el modelo del análisis didáctico. Los resultados obtenidos hasta el momento reflejan un aumento en el interés que los estudiantes tienen por el área, en el respeto por las ideas de otros y en la utilización de argumentos válidos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Las clases de matemáticas no debieran tener como objetivo fundamental el aprendizaje de contenidos (definiciones, teoremas, axiomas…) que posteriormente serán aplicados a la resolución de un gran listado de ejercicios y problemas propuestos por el profesor y que justificará el aprendizaje de dichos contenidos, sino que, por el contrario, debieran partir con un problema concreto y familiar para el alumno. Una vez planteado éste y discutido por todos, estudiantes y profesor, traerá como consecuencia la obligación de resolverlo y por tanto la necesidad del aprendizaje de las técnicas que son necesarias para ello y recurrir al uso de tecnología disponible. Es muy importante destacar que durante todo el proceso el alumno hace conjeturas que irá verificando en cada paso. Se dará cuenta que algunas de las conjeturas que hizo son correctas y que otras no lo son, es decir, cometerá errores y aciertos, en función de los cuales irá cimentando su aprendizaje. Pero, por sobre todo, debe aprender que “va al colegio a equivocarse”, pero que no debe quedarse en el error, que en la discusión con sus compañeros y el profesorado encontrará la(s) solucione(s), que es probable que más de una sirva, pero que también unas son mejores que otras, que en algunos casos hay una solución óptima, en definitiva irá “aprendiendo a aprender”. Se ilustra lo anterior planteando resolver un clásico problema de construcción de cajas utilizando como herramienta de aprendizaje el software DERIVE 5.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este documento es una síntesis de una propuesta didáctica para modelar estadísticamente, errores de medición en las ciencias naturales. El origen de este trabajo fue motivado por cuatro cuestiones: la primera es la enseñanza del error como requisito para el currículo, los estándares curriculares establecen que un error es un punto en uno de los caminos hacia la verdad y, cada punto en ese camino, es un error de mayor o menor magnitud. Se vive en un mundo lleno de incertidumbres donde a nivel físico no existen verdades absolutas, por tanto, se vive con el error permanentemente, la segunda es la escasez de recursos didácticos para atender la enseñanza de error de medición en el aula teniendo en cuenta la revisión bibliográfica realizada, la tercera es el manejo interdisciplinar que se le puede dar al error de medición en el aula, y por último, es el uso de herramientas tecnológicas para el desarrollo de modelos o representaciones visuales acerca de éste tema en el aula, la importancia del error de medición en las ciencias y el tratamiento estadístico del error de medición en el aula, como instrumento para evaluar de forma cuantitativa la precisión y exactitud de los resultados obtenidos a partir de procesos experimentales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A menudo se piensa que en las Matemáticas no 69 hay lugar para el ensayo y el error, propagando la idea de que gran parte de la labor del matemático es tener la ocurrencia apropiada. En este artículo mostramos dos problemas que, aunque aparentemente deberían resolverse usando la misma idea, son resueltos sin justificación alguna en los libros de texto utilizando ideas diferentes. Además, presentamos otra situación mucho más próxima al estudiante con la misma dificultad subyacente y que sirve para explicar dicha dificultad de un modo más adecuado al nivel del alumno.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pensar que existen soluciones para cerrar la brecha entre el colegio y la universidad es utópico. Sin embargo, sí tiene sentido el trabajo que se haga con respecto al problema de la brecha para conocer y acercar los ideales y las expectativas que tienen las diferentes instituciones de educación. En la Universidad de los Andes fue evidente que dicho trabajo se podría orientar en diferentes direcciones y haciendo énfasis en la institución o bien en los profesores o bien en los estudiantes. Se podían abordar temas como: diseño curricular, creencias y actitudes de los profesores y de los estudiantes, métodos de enseñanza, concepciones sobre la enseñanza y el aprendizaje, dificultades y errores de aprendizaje y otros temas. Luego de varios traspiés en la elección del tema de investigación, elegimos finalmente explorar el tema del aprendizaje y considerar a los primíparos para el estudio por ser ellos los que viven realmente el proceso de transición del colegio a la universidad. Por otra parte, nos restringimos al área de precálculo motivados en parte porque en esta materia había un mayor índice de desaprobación. Concretamente, se propuso como objetivo general describir un perfil de aprendizaje en matemáticas del estudiante de Precálculo en el momento de ingresar a la Universidad. Del objetivo anterior se derivó el problema principal de este proyecto: definir los elementos conceptuales con los cuáles articular la descripción de dicho perfil. La presentación está dividida en cuatro partes, en la primera se expone un marco conceptual que presenta los elementos con los cuales se describirá el perfil, la segunda y tercera se refieren respectivamente a la metodología de la investigación y a los resultados obtenidos y la última a las conclusiones del trabajo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Propongo un catálogo para los errores que puedan encontrarse al realizar el proceso de traducción algebraico. El catálogo consta de tres categorías: errores en el uso de letras, errores en la construcción de expresiones algebraicas y errores en la construcción de la igualdad. Constaté la validez del catálogo con las igualdades incorrectas producidas por 258 estudiantes de bachillerato que trabajaron 13 problemas. Encontré que las producciones persistentes dan cuenta de una parte sustantiva del error total y que estas producciones contienen errores de las categorías antes citadas. Además, determinados errores se podrían asociar con tipos de problemas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este artículo tiene un carácter nostálgico y evocador, pues hace el 30º de la serie. Resolvemos los problemas propuestos en el artículo anterior y planteamos nuevos ejercicios enmarcados como “Problemas de los abuelos”. Se hace especial hincapié en el proceso resolutivo, sus diferentes pasos y utilizando métodos tales como: ensayo y error; tablas de doble entrada o esquemas y la búsqueda de regularidades, patrones o modelos, actuando de manera que se orientan sus soluciones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La investigación tiene dos fases: 1) Se plantea a los estudiantes de primer ingreso a la Universidad Panamericana, Guadalajara, México la simplificación de la expresión algebraica ; analizándose las respuestas equivocadas con su posible origen. 2) Se hace un estudio con 7 profesores de educación media básica y media superior, en el cual, se les presenta la simplificación errónea (a la izq.) con la consigna de mencionar el origen del error y cómo le ayudarían al alumno. Alumnos cometen errores de muy diverso origen, y los profesores encuestados no siempre analizan a profundidad el origen del error cometido por este alumno.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Se repasa el planteo tradicional del criterio de la integral para la convergencia de series (con las hipótesis de que la función en cuestión sea continua, positiva y decreciente, y la conclusión de que la serie y la integral impropia convergen ambas o divergen ambas). Se muestran ejemplos en los que fallan una o más de las hipótesis y la conclusión del criterio falla. Se demuestra que son innecesarias las hipótesis de continuidad y positividad, y finalmente que basta con una condición aún más débil que la de que la función sea decreciente. Los resultados se aplican tanto a la equivalencia entre la convergencia de la serie y la convergencia de la integral impropia como a la fórmula para la cota del error en las sumas parciales cuando la serie converge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En la sección de cabeza del número anterior de SUMA habíamos dejado a Galileo sumido en su sutil pero lamentable error de que la curva por la que una bola caería de un punto más alto a otro más bajo en el menor tiempo posible sería un arco de circunferencia que uniese ambos puntos. Johann, el pequeño de los Bernoulli, ya sabía que Galileo estaba equivocado cuando lanzó en el verano de 1696, el reto público, pensando más en provocar a su hermano mayor Jacob que en otra cosa, de encontrar la auténtica curva braquistócrona, la de tiempo más breve posible.