10 resultados para El Salvador--Servicio diplomático y consular
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
El objetivo de esta investigación es identificar las relaciones entre el conocimiento de geometría usado durante la resolución de problemas de probar y el truncamiento del razonamiento configural. Los resultados muestran diferentes trayectorias de resolución vinculadas a las sub-configuraciones relevantes. Estos resultados parecen indicar que el truncamiento del razonamiento configural está relacionado con la capacidad de los estudiantes de establecer relaciones significativas entre lo que conocen de la configuración y la tesis que hay que probar a través de algún conocimiento geométrico previamente conocido.
Resumo:
Tradicionalmente la geometría desde la escuela se ha enseñado desde un mismo sentido: lo bidimensional, sin considerar que las representaciones bidimensionales se hacen precisamente de objetos tridimensionales del mundo físico. Actualmente y según los lineamientos curriculares de matemáticas para una mejor percepción del espacio se requiere que el estudiante comunique y represente el espacio bidimensional a través de experiencias significativas con lo tridimensional, esta relación entre el espacio tridimensional con el plano puede desarrollarse a partir de la construcción de poliedros debido a que con estos se puede propiciar tres tipos de procesos cognitivos importantes para el desarrollo del pensamiento espacial: los procesos de visualización, los procesos de construcción y los procesos de razonamiento.
Resumo:
Se presenta una propuesta, para un taller de dos sesiones, sobre el trabajo en equipo como una opción para el aprendizaje en el aula de matemáticas, la cual complementa y apoya los planteamientos hechos en los lineamientos curriculares, particularmente los que se refieren a los procesos generales como: razonamiento, resolución y planteamiento de problemas; comunicación; modelación; y elaboración, comparación y ejercitación de procedimientos. La cual esta basada en el fascículo Resolución de problemas y aprendizaje en equipos: una perspectiva desde la Educación Matemática, preparado para el diplomado que la fundación Fedespegue ofrecerá a los profesores interesados en el trabajo en equipo, para el 2008.
Resumo:
En esta comunicación presentamos el sistema tutorial inteligente, al que hemos llamado AGENTGEOM, y analizamos cómo interactúa con un alumno en la resolución de un problema que compara áreas de superficies planas. En esta interacción, el alumno llega a apropiarse de habilidades estratégicas y argumentativas en la resolución de problemas. Observaremos que estas apropiaciones son consecuencia de las formas de comunicación alumno-AGENTGEOM, en las que se combinan construcciones gráficas y sentencias escritas que siguen las normas del lenguaje matemático, y la emisión de mensajes escritos en lenguaje natural.
Resumo:
El concepto de continuidad está íntimamente ligado a los de infinito y límite. En este trabajo se presenta primeramente un breve recorrido por las ideas que influyeron históricamente en la construcción matemática del concepto de continuidad a lo largo de la historia del pensamiento humano y se analizan las concepciones que sobre este concepto tienen los alumnos a las distintas edades, con la finalidad de clarificar ideas y buscar nuevas estrategias didácticas para abordar el tema del continuo.
Resumo:
Este documento contiene los aspectos esenciales de una conferencia dictada por el autor en el marco de las actividades de la RELME 16 celebrada en la Habana, Cuba. El tema se refiere a las concepciones alternativas relativas al análisis de funciones en ambientes gráficos. En especial se analizan la importancia de esas concepciones en tanto procesos cognoscitivos que interfieren en los procesos de aprendizaje, las posibilidades de ser cambiadas por otras aceptables y su permanencia en la mente de los estudiantes a pesar de emplear diseños instruccionales para removerlas.
Resumo:
En este capítulo,describimos nuestras actuaciones para el diseño e implementación de la unidad didáctica relacionada con el cálculo de áreas de polígonos por el método de descomposición y recomposición. Inicialmente, efectuamos la formulación del problema, al enfocarlo desde la normativa curricular colombiana, y describimos el proceso de selección del tema y los contextos social, institucional y académico del colegio donde se implementó. Después, explicamos el proceso del diseño basado en el análisis didáctico realizado sobre el tema. Seguidamente, describimos los instrumentos y procedimientos de recolección y análisis de la información. Posteriormente, describimos el diseño que se implementó, detallamos la evaluación realizada al diseño y a la implementación, y mostramos una propuesta de mejora para una futura aplicación. Por último, presentamos conclusiones de aspectos relevantes en el diseño e implementación de la unidad didáctica y listamos las referencias y anexos.
Resumo:
Hasta hace poco la idea de que todo país estable tenía un perímetro de frontera y una superficie determinada formaba parte de las firmes creencias de todos nosotros. En estos sorprendentes tiempos en que vivimos hasta estas ideas firmes sobre medidas empiezan a ser superadas. Durante décadas la escasez de terreno inducía a construir edificios cada vez más altos y a ir aumentando la cotización de determinadas zonas como las de los centros y la primera línea de mar. Esto esta liquidado.
Resumo:
Demos un gran salto en el tiempo. En números anteriores narramos los avatares del problema isoperimétrico en Grecia y en los países islámicos medievales, respectivamente. Retomemos el enfoque dado por Pappus con el que llegó a la conclusión de que, para un área dada, el perímetro del hexágono regular es menor que el del cuadrado o el del triángulo equilátero, por lo que si el problema se plantea sobre una teselación regular del plano, un trozo finito del teselado regular hecho con hexágonos regulares es el que requiere menor perímetro. Bueno, aún no podemos detenernos porque hemos de hacer la demostración de la proposición de Pappus en 3D. El conocido MacLaurin (1698-1746), profesor de Aberdeen y Edimburgo, utilizó el método que a continuación presentamos. Lo hizo para poner de manifiesto la capacidad de la Geometría clásica como fuente de investigación en cualquier momento (conviene recordar que MacLaurin estaba centrado en analizar las posibilidades de los métodos infinitesimales que en su época emergían, lo que demostró sobradamente con su Treatise of Fluxions).
Resumo:
El desarrollo de las habilidades para un conocimiento estadístico necesario es posible desarrollarlo y fortalecerlo por medio de variados recursos didácticos dispuestos para la enseñanza y aprendizaje. Dentro de los recursos disponibles es el texto de matemática el más utilizado por profesores y estudiantes. El texto debe entregar herramientas que permita a los estudiantes desarrollar una alfabetización matemática, realizando una focalización más explícita en los conocimientos, comprensión y habilidades requeridas para funcionar efectivamente en la vida diaria (PISA Chile, 2009).