21 resultados para Centro de Recursos para el Aprendizaje
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
El presente documento tiene como finalidad el mostrar el proceso enseñanza- aprendizaje dado en el colegio I. T. I. Francisco José de Caldas en una práctica docente, abordando tres campos de pensamiento matemático: numérico, métrico y geométrico a partir de una situación fundamental explicitada en algunos juegos. Esta metodología se usa con el fin de hacer que los estudiantes obtengan un aprendizaje significativo de las temáticas propuestas, por medio de un proceso lúdico y dinámico; su objetivo es reflexionar acerca de los propósitos que tiene el maestro frente al proceso que enfrentan los estudiantes, sin pensar solamente en abordar muchos conocimientos para lograr todo lo propuesto por el currículo, sino que, independientemente de esto, se buscó que todo lo que se dio a conocer quedara completamente claro.
Resumo:
En este documento se caracterizan los usos de las gráficas. Se caracteriza su uso en la enseñanza tradicional, en los medios de comunicación, para el desarrollo del pensamiento y el uso social que se les da en las comunidades de profesionales o en la vida diaria de la gente. En la enseñanza tradicional son utilizadas como auxiliares didácticos que hacen posible la visualización de datos. Hoy día las gráficas son muy usuales en los medios de comunicación como recursos para transmitir información a núcleos poblacionales amplios, sin embargo las graficas socialmente compartidas requieren de lectores con una cultura amplia que les posibilite entenderlas y darles el sentido adecuado. Las graficas no solo son necesarias transmitir información, son útiles para favorecer el desarrollo del pensamiento y lenguaje variacional. Las habilidades como: la estimación, el cálculo, la predicción, el planteo de conjeturas, para identificar lo que cambia, para correlacionar cambios, para determinar las cualidades del cambio, etc. pueden contribuir al desarrollo de este tipo de conocimiento.
Resumo:
En el presente documento desarrollaremos los siguientes tópicos, la geometría y su importancia, modelo de enseñanza de la geometría, importancia de los materiales didácticos en el aprendizaje de la geometría, aprendiendo geometría con materiales didácticos, aproximación de las nuevas tecnologías y herramientas para la geometría. Los materiales o recursos didácticos adecuados cobran una especial importancia en su faceta de motivadores del proceso formativo del niño y niña dado que fomentan la exploración, manipulación y comprensión; de modo tal que, efectivamente, favorecen el proceso de enseñanza-aprendizaje de las Matemáticas.
Resumo:
Tomando el aprendizaje como participación en prácticas discursivas, presentamos un estudio sobre el aprendizaje de la Geometría en clases de secundaria con alumnado en situación de riesgo social. Bajo el supuesto del uso de la tecnología como promotor de participación, se diseñó e implementó una secuencia didáctica en un entorno de geometría dinámica. En el análisis de casos de estudiantes se consideraron aspectos cognitivos, afectivos e instrumentales de modo integrado. En este informe se ilustran dos resultados derivados del desarrollo de un caso. Por un lado, la dificultad por definir la noción de incentro se asocia a un uso del entorno informático poco significativo matemáticamente. Por otro, el rechazo a la exposición pública en la pizarra digital interactiva se asocia a la experiencia de dificultades en procesos de pensamiento matemático.
Resumo:
Diversos estudios sobre tecnologías educativas para la docencia superior, formulan la participación activa y aprendizajes significativos, complementado con trabajo interactivo y autoestima positiva. Investigadores en educación afirman que “Construimos significados cuando relacionamos las nuevas informaciones con nuestros esquemas previos de comprensión de la realidad”. Por tanto, se propone incluir los contenidos dentro de situaciones naturales que impliquen el enfrentamiento del alumno con tareas que se asemejen a las complejas situaciones de la vida real y profesional. Esto apoyado con tecnología, donde el objetivo sea desarrollar actividades que permitan al alumno descubrir relaciones, propiedades, y donde desarrolle la capacidad de análisis, creatividad y una actitud crítica hacia los resultados.
Resumo:
El presente artículo estudia aquellos materiales que pueden ser utilizados por el profesor de matemáticas en el aula, englobándolos según la forma de uso así como por el lugar de dónde fueron extraídos. Cita unas experiencias de colaboración entre profesorado de física, química y matemáticas realizadas en el centro de trabajo del autor del artículo.
Resumo:
En un proyecto de investigación finalizado, se diseñó un software de escritorio para la enseñanza y el aprendizaje del tema Resolución Numérica de Ecuaciones no Lineales, usando el paquete MatLab.
Resumo:
El presente trabajo está enmarcado dentro de un proyecto de aplicación de las técnicas de una Ingeniería Didáctica (M. Artigue) en la enseñanza de la Matemática, a fin de facilitar el aprendizaje de temas específicos de la asignatura, contextualizando saberes y procedimientos. Es una experiencia realizada con un grupo de alumnos de la cátedra Matemática de primer año de carreras de Ciencias Naturales, (Profesorado y Licenciatura en Ciencias Biológicas, Ingeniería en Recursos Naturales y Medio Ambiente) y del Profesorado en Química que se dicta en la Facultad de Ciencias Exactas y Naturales de la Universidad Nacional de La Pampa-Argentina. El objetivo de esta propuesta fue generar una mayor participación en las clases prácticas, promover el aprendizaje y mayor interés en el tema funciones, en particular las exponenciales, logarítmicas y trigonométricas, utilizando medios tecnológicos, específicamente la computadora y los software Mathematica y Derive, instalados en el gabinete de Computación de nuestra casa de estudios. Disponiendo los alumnos de los apuntes con las sentencias y comandos necesarios de ambos software, analizaron las funciones desarrolladas previamente en las clases teóricas; representando, relacionando y operando con los ejercicios incluídos en el trabajo práctico del tema, visualizaron las características de cada una y resolvieron situaciones problemáticas integradoras. Concluimos que la experiencia realizada resultó positiva y actuó como un agente motivador en otros alumnos que permanecían indiferentes a la aprehensión del tema propuesto.
Resumo:
En este trabajo precisamos el significado de los términos capacidad y competencia en el marco de un programa de formación inicial de profesores de matemáticas de secundaria. Describimos brevemente las bases de ese programa y, a continuación, presentamos y ejemplificamos un procedimiento mediante el cual los futuros profesores reflexionan en torno al aprendizaje de los escolares y usan esas nociones cuando abordan la planificación de una unidad didáctica.
Resumo:
A nivel educativo la noción de derivada se enseña en los cursos regulares de cálculo, pero por lo general, siempre en la forma en que fue definida por Cauchy, lo que implica un procedimiento se hace necesario hacer una factorización. Constantin Caratheodory establece una definición diferente. Esta definición presenta tres aspectos didácticos destacados: Nos muestra que el proceso de acercamiento de las pendientes de las secantes a la pendiente de la tangente es continuo y por tanto, la continuidad es esencial para la derivabilidad, la segunda parte se refiere a la facilidad de la derivación como un proceso de factorización repetitivo y no como cálculo de límites, así como simplicidad en la demostración de teoremas de linealidad, regla de la cadena, algebra de derivadas (suma, producto y cociente), aplicado a funciones polinómicas de valor real y la tercera es que a nivel escolar se generan alternativas en la enseñanza del cálculo a través de la implementación de conceptos nuevos, con el fin de evitar procedimientos tediosos que se tienen con las definiciones tradicionales como la de Cauchy.
Resumo:
La propuesta que hoy presentamos, es el resultado de varios años de implementación del proyecto liderado por el Ministerio de Educación, las Universidades y algunas Secretarías de Educación, conocido como Incorporación de Nuevas Tecnologías al Currículo de las Matemáticas de la Educación Básica y Media de Colombia con la mediación de los Software Interactivos como Cabri y los accesorios externos como sensores para toma de datos. Al definir el objeto de las matemáticas, encontramos que su aprendizaje no sólo se basa en formar el espíritu lógico, sino también proporcionar herramientas para la solución de problemas reales. Por lo tanto, se debe combinar el rigor lógico con la funcionalidad, puesto que además de la lógica formal las matemáticas proporcionan también un poderoso conjunto de herramientas que posibilitan describir, explicar, predecir y modelar situaciones no sólo del mundo científico, sino también de la vida cotidiana (significación). Es por esto, que juega un papel importante implementar en su didáctica, el referirla al mundo de la naturaleza, de las otras ciencias (interdisciplinariedad), y de la cotidianidad del hombre. Es fácil ver los nexos que tienen las Ciencias Naturales con el mundo extraescolar, lo que permite construir el conocimiento a partir de proyectos en donde se manipule en forma directa el mundo real. Las temáticas que se trabajan en esta propuesta además de permitir lo anterior, proporcionan el estudio formal de las matemáticas y el desarrollo de sus diferentes pensamientos. Los ejes temáticos trabajados son: Cinemática, Luz, Electricidad, Calor y Energía y propiedades químicas de las sustancias, entre otras.
Resumo:
En este trabajo exploramos la problemática de la enseñanza y el aprendizaje del análisis fenomenológico en un programa de máster de formación de profesores de matemáticas de secundaria en ejercicio basado en el modelo del análisis didáctico. Con base en la descripción de los aspectos teóricos y técnicos de este organizador del currículo, establecemos una serie de acciones que permiten describir la actuación de los profesores en formación en sus producciones escritas. Identificamos y caracterizamos la dificultad manifestada por los profesores en formación sobre las principales ideas que configuran este procedimiento.
Resumo:
En los últimos años del siglo pasado y específicamente desde la promulgación de la Ley General de Educación, las políticas educativas en Colombia han tenido como meta la solución del problema de la baja calidad de la educación; por esta razón se han promovido cambios y se ha prestado especial interés a la evaluación como estrategia primordial para conseguir ese propósito. A través de la evaluación se pretende mejorar los niveles de aprendizaje de los estudiantes y enriquecer el desarrollo profesional de los maestros. Pero la forma de concebir la evaluación no ha cambiado mucho y la manera como se lleva a cabo, poco o nada contribuye en la formación de personas para lograr un nivel adecuado dentro de una sociedad democrática.
Resumo:
A través de una serie de tareas desarrolladas con un sofware de geometría dinámica, buscamos propiciar la comprensión de lo que es y lo que expresa una condicional en matemáticas. Por medio de problemas propuestos, en los cuales se debe formular una conjetura, como resultado de la exploración realizada y la determinación de invariantes, se busca que los participantes del taller comprendan que las condiciones establecidas en el antecedente son sucientes para concluir el consecuente y que el consecuente es necesariamente resultado de las condiciones que se reportan en el antecedente.
Resumo:
El presente reporte de investigación de tipo cualitativo, tiene por objeto dar a conocer, como parte de la investigación, resultados relacionados con los procesos de generalización que se presentan en alumnos de edades 14-15 años al tratar con sucesiones figurativas, en donde el patrón matemático se comporta en forma lineal y cuadrática. Se señala que el hacer uso de patrones, desarrolla el pensamiento algebraico, así como también permite a los estudiantes desarrollar la comprensión del concepto como establecer relaciones matemáticas. Como parte de la perspectiva teórica se ha empleado el Modelo Teórico Local, considerando tres de los cuatro componentes: Competencia formal, modelo de enseñanza y procesos cognitivos.