32 resultados para Cecilia Valdés
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
El objeto de investigación del estudio que aquí se presenta es la serie de actores, factores y relaciones entre ellos que, dentro de la institución educativa y su organización en secundaria, determinan la calidad de la formación matemática que logran los estudiantes colombianos. El problema de investigación de PRIME I se concentra en el estudio de procesos asociados con la enseñanza de las matemáticas, antes de que éstos se concreticen en la interacción directa entre profesor y estudiante en el ámbito restringido del salón de clase, es decir, antes de que lleguen a generar un producto en la manera como los estudiantes construyen (o no) su conocimiento matemático. Para dar cuenta de la indagación hecha, este libro se organiza de la siguiente manera. El primer capítulo formula la problemática general que abordó el proyecto. El segundo capítulo muestra cómo se inscribe el espacio de la investigación en el marco de la literatura de la comunidad internacional de educación matemática. El tercero presenta las consideraciones conceptuales que sustentan la aproximación del proyecto a la problemática de la calidad de las matemáticas en secundaria desde la perspectiva de la insitución educativa. El cuarto capítulo expone los principios y diseño metodológicos seguidos en el proceso de investigación. En el quinto capítulo se exponen los resultados generales del proyecto en términos de lo sucedido en el Sistema Institucional de la Educación Matemática (SIEM) en los colegios participantes y de la influencia de la estrategia de desarrollo profesional realizada con ellos en sus sistemas. El último capítulo retoma una de las grandes preguntas iniciales acerca de la pertinencia del modelo del SIEM para abordar la realidad de la enseñanza de las matemáticas en los colegios colombianos y se presenta una reformulación de éste; también presenta las particularidades metodológicas del proceso de reformulación teórica del modelo del SIEM.
Resumo:
En muchos colegios las reuniones de área son el único espacio programado por la institución para la interacción entre profesores del área. El Colegio Santafé de Bogotá es un ejemplo de ellos. En éste, las reuniones de área tenían un carácter eminentemente informativo, situación que parecía ser la causa de que el grupo de profesores de matemáticas no estuviera suficientemente cohesionado para el trabajo y de que en las reuniones de área no se trataran temas relacionados con asuntos propios de la enseñanza de las matemáticas. Con la consciencia de que lograr el consenso del equipo de profesores en cuanto a aspectos fundamentales para la formación matemática, es el primer paso de un proceso de largo plazo para mejorar la enseñanza de las matemáticas, se realizaron acciones tendientes a iniciar ese proceso y a promover el tratamiento de temas propios de la educación matemática entre los profesores. La experiencia que se narra en este artículo da cuenta de lo que sucedió en tres reuniones de área: la primera, de motivación; la segunda, de indagación y consenso; y la última, de lectura, debate y reflexión. Entre los resultados obtenidos con las acciones implementadas vale la pena destacar que se logró dentro del grupo de profesores explicitar inquietudes u opiniones en cuanto al quehacer matemático y unificar criterios en lo referente a la formación de aspectos relevantes de la matemática. Por otro lado, el trabajo mismo de investigación deja en quien lo realiza una lección sobre el continuo cuestionamiento y reflexión que se debe hacer sobre la propia práctica.
Resumo:
Este artículo presenta algunas reflexiones adelantadas en el trabajo de investigación "Desarrollo del razonamiento a través de la geometría euclidiana" que llevamos a cabo en la actualidad. Se centra en dar una visión sobre el razonamiento en la actividad geométrica, los tipos de razonamiento que hemos identificado y una caracterización particular del razonamiento visual. Las ideas se ilustran por medio de relatos de situaciones vivenciadas con nuestros estudiantes de primer semestre, en cursos de geometría euclidiana, de la Universidad Pedagógica Nacional.
Resumo:
El presente trabajo propone una discusión acerca de las situaciones que surgen en la clase de matemática a causa de las incoherencias del discurso matemático escolar, que pueden encontrarse en todas las áreas de esta disciplina. Desde cuestiones relativas al cálculo, al análisis matemático o a la geometría, pueden verse discursos “partidos” entre lo que se define y lo que luego se hace y evalúa. Los docentes fomentan esa división, y los alumnos las asumen como parte del contrato didáctico.
Resumo:
El presente trabajo, realizado como parte de una investigación desde la línea de la construcción social del conocimiento con enfoque socioepistemológico, se centra en analizar a partir de un estudio de caso algunas de las características del lenguaje utilizado en el discurso matemático escolar. Se describen aspectos del lenguaje empleado por los estudiantes y docentes en el aula de matemática, mostrando la manera en la que la utilización de un lenguaje formal es aceptada como parte del contrato didáctico, a pesar de que se torna en obstáculo en muchas oportunidades.
Resumo:
Mostraremos a continuación la posibilidad de generar modelos matemáticos simples a partir de la explicación de un hecho físico. El marco teórico de partida es el de la explicación científica con la estructura del modelo nomológico deductivo. El uso de modelos matemáticos en este marco genera herramientas didácticas de distinto tipo, en este articulo desarrollamos brevemente el diseño de proyectos de investigación para los alumnos. El docente puede generar y luego utilizar estos proyectos de distintos modos, por ejemplo, como actividad de cierre de un curso, o también para generar una discontinuidad en el transcurso de la cursada, como actividad en paralelo que ocupe algún momento de las clases, etc.
Resumo:
El presente trabajo forma parte de una investigación en la línea de la construcción social del conocimiento. El tema central de este reporte es la construcción escolar del infinito y las dificultades que éste concepto presenta debido a su origen sociocultural por un lado y matemático por otro. Se produce entonces un choque entre esos dos infinitos: el construido socialmente y desconocido por la escuela, y el matemático, que se utiliza en la escuela, pero es desconocido por los alumnos. Para indagar sobre la naturaleza del infinito con que se trabaja en el aula, se presenta y analiza una actividad, centrada en el estudio de funciones, y en particular de la existencia y cálculo de asíntotas que fue llevada a cabo con alumnos de escuela media. Las respuestas demuestran que el infinito construido fuera de la escuela sigue marcando en ellos la forma en que el infinito funciona y que el infinito matemático les presenta sólo conflictos y dudas.
Resumo:
Este documento reporta los resultados de un estudio exploratorio aplicado a estudiantes de secundaria que presentan problemas de equiprobabilidad y centración en ejercicios de probabilidad basados en el razonamiento proporcional. Los problemas propuestos a los estudiantes han sido analizados por Green, Papinni, Fischbein y Gazit en investigaciones previas, de esta manera, nuestro aporte consiste en proponer una extensión a los resultados obtenidos por estos autores a partir de marco conceptual SOLO Taxonómico propuesto por Biggs y Collins (1982), que consiste en cinco niveles presentes en el ciclo de aprendizaje de una persona dentro de cada uno de los estadios de Piaget.
Resumo:
La introducción de nuevos planes de estudio en Francia (2002), muestra la importancia que tiene actualmente la enseñanza y aprendizaje de la modelación, principalmente en disciplinas científicas como Matemáticas y Física. En los programas oficiales y libros del último año de preparatoria se observa la introducción de la noción de ecuación diferencial como objeto de estudio pero también como herramienta para modelar diversas situaciones físicas. En esta investigación, estableceremos un modelo del proceso de modelación que constituya una referencia para posteriormente caracterizarlo, desde un punto de vista antropológico, en dos instituciones diferentes: la clase de matemáticas y la clase de física.
Resumo:
Presentamos una reseña del tratamiento que daban distintas culturas antiguas a problemas que en el lenguaje del álgebra actual nos remiten a ecuaciones de segundo grado. Recorreremos, sin pretender ser exhaustivos, parte del camino que transitaron culturas como la babilónica, griega, hindú, árabe hasta la resolución dada por François Viète.
Resumo:
En el trabajo se presenta una síntesis de la importancia que se atribuye a formar una cultura estadística en los ciudadanos, se caracterizan los programas de Matemática para décimo y duodécimo grado en Cuba, los que contemplan contenidos de Estadística Descriptiva y Probabilidades; así mismo, se valoran estos contenidos y se presenta una metodología encaminada a orientar a los profesores de la enseñanza media superior en lo referente a la organización y desarrollo del proceso de enseñanza-aprendizaje de la Estadística y las Probabilidades.
Resumo:
En el marco de la convocatoria desde la Secretaria de Políticas Universitarias del Ministerio de Educación Ciencia y Tecnología de la República Argentina para realizar proyectos cuya meta el Apoyo a las Escuelas Medias, se presentó desde la Facultad Regional Tucumán – Universidad Tecnológica Nacional, el proyecto “Desarrollo de un Sistema de Vinculación e Innovación para Mejorar la Relación entre la Propuesta Educativa de la Escuela Media, y el Mundo del Trabajo en las Comunidades de Inserción de las Instituciones Involucradas”. Para obtener información sobre la comunidad educativa involucrada en el Proyecto, se decidió diseñar diferentes encuestas a ser aplicadas a los alumnos, docentes , graduados y directivos. Este trabajo aporta, entonces, una descripción de los resultados obtenidos en la encuesta aplicada a los alumnos de las diferentes escuelas participantes en el Proyecto.
Resumo:
Tomando como inicio el contexto de la Matemática para su enseñanza, encontramos que existen múltiples relaciones entre ella y diferentes ramas del Arte. El tema que presentamos en este taller es ilimitado. Presentaremos algunos “matemáticos-escritores”, algunos autores del género “Matemática Recreativa” y otros ejemplos de famosos científicos que incursionaron en la Literatura o famosos literatos que incursionaron en la Matemática. En definitiva, se trata de mostrar, brevemente, algunos vínculos entre la Matemática y la Literatura, ya que estos textos pueden utilizarse como disparador para la introducción de nuevos contenidos.
Resumo:
Esta investigación se propone responder a interrogantes iniciales que surgen en torno al planteamiento y ejecución de programas de actualización y capacitación, con la intensión de contribuir, en buena medida, a enriquecer nuestro conocimiento de lo que ocurre en el aula. En lo particular, centramos la atención en el papel de las explicaciones en la clase de matemáticas cuando se pretende introducir conceptos geométricos, específicamente la noción de semejanza en el nivel medio superior. Consideramos un modelo de investigación cualitativa, basada en el método etnográfico que toma a la observación como técnica de registro. Los participantes en la investigación son profesores en servicio del nivel medio superior.
Resumo:
Se indaga en los desplazamientos entre herramientas de comunicación que ponen en juego profesores a la hora de comunicar qué y cómo cambia en una situación, en el marco de una línea de investigación en Pensamiento y Lenguaje Variacional (Proyecto Fondecyt Nº1030413 y Proyecto Diumce 06/07). Adscribimos a una mirada sistémica en la que entendemos a las matemáticas como una actividad humana en donde cobra vital importancia la persona haciendo matemáticas y no sólo el producto matemático. Por ello resulta relevante considerar -en la praxis educativa- las negociaciones y búsqueda de consenso entrelazadas éstas, con las acciones cognitivas de la persona al momento de enfrentarse a la solución de un problema. Asumimos una naturaleza de la noción de variación como red semántico operacional transversal, que imbrica distintos contenidos escolares de ciencia experimental y de matemática, particularmente aquellos de tiempo y velocidad. Entendemos al tiempo cotidiano formado por una red compleja de intencionalidades y coordinaciones que se estructuran a partir de las necesidades de coordinación con lo otro, con los otros y de las proyecciones intencionales hacia un futuro y un pasado, y, al tiempo matemático en su calidad de parámetro y figurado sobre la base de la metáfora de una distancia horizontal. A continuación se analizan, desde ese marco conceptual, las herramientas a que recurren profesores para comunicar cambios en una situación específica desarrollada en el marco las actividades del Proyecto de Investigación Las representaciones docentes del Cambio.