21 resultados para Capitalismo cognitivo

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Al respecto de las múltiples angustias surgidas por docentes de matemáticas en formación entorno a las dificultades y errores evidenciados por estudiantes de básica segundaria y media en la construcción de pensamiento algebraico, se expone a continuación para el caso de la generalización algebraica los hallazgos logrados desde la investigación que recupera en primera instancia a manera de reseña los referentes teórico conceptuales, las definiciones pertinentes y la clasificación de las dificultades y errores en la educación matemática especialmente en el caso de algebra; de igual manera se detallan características y acuerdos conceptuales entorno a razonamiento, razonamiento algebraico; esta ponencia evidencia los presupuestos e ideales para la educación matemática y la enseñanza del algebra para finalmente establecer la relación y justificación conceptual entre: sistemas de representación (errores); las dificultades (comprensión) y razonamiento algebraico. Con la exposición de ejemplos logrados en las experiencias de aula y analizados producto del trabajo de campo en este estudio, se presenta a manera de propuesta los comentarios, reflexiones y recomendaciones que permitirán al futuro docente de matemáticas diseñar un modelo de competencia formal y cognitivo para entender y actuar en situaciones de la enseñabilidad que se dan en el entorno educativo en especial en relación al razonamiento algebraico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la Educación Matemática es ampliamente reconocida la importancia de la investigación de los factores que influyen o generan procesos de aprendizaje, que ayuden a los estudiantes a construir de manera significativa los objetos matemáticos. En el marco de esta propuesta, se reconoce que la investigación actual de carácter cognitivo en educación matemática, evidencia que los problemas de comprensión que presentan los estudiantes tienen que ver tanto con el contenido enseñado, como con la complejidad de la construcción de los saberes, es decir, con los funcionamientos propios que constituyen la parte operativa del pensamiento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se aplican algunas nociones teóricas del enfoque ontosemiótico del conocimiento y la instrucción matemática (Godino, Contreras, Font, 2006) al análisis de una experiencia de enseñanza del concepto de límite funcional con estudiantes de bachillerato. Los procesos de enseñanza – aprendizaje se modelizan en este marco teórico como un proceso estocástico multidimensional compuesto de seis subprocesos (epistémico, docente, discente, mediacional, cognitivo y emocional) con sus respectivas trayectorias y estados potenciales. En este trabajo centramos la atención en la dimensión epistémica mostrando algunos conflictos semióticos y limitaciones en el significado institucional implementado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El trabajo que se realiza en el análisis de instrucción se basa en la información que surge del análisis de contenido y del análisis cognitivo. En particular, en este módulo, introducimos conceptos y proponemos técnicas para la búsqueda, diseño, descripción, análisis y modificación de las tareas y de la secuencia de tareas que configuran la propuesta del profesor para la enseñanza de un tema de las matemáticas escolares. Este trabajo se basa en la información que surge de la caracterización de los objetivos de aprendizaje que se realizó anteriormente. En este sentido, el análisis cognitivo da respuesta a las siguientes cuestiones: (a) proponer una versión inicial de las tareas que conformarán la propuesta para la unidad didáctica. Identificar y analizar los materiales y recursos que pueden ser útiles para esa propuesta; (b) describir las tareas con todos sus elementos; (c) analizar y modificar el conjunto de tareas; y (d) describir, analizar y modificar la secuencia de tareas. Tras realizar el análisis de instrucción, el profesor tendrá una propuesta de una secuencia de tareas para la que él ha justificado su contribución al logro de las expectativas de aprendizaje y afectivas y a la superación de las limitaciones de aprendizaje. Esta secuencia de tareas será el punto de partida para el módulo de análisis de actuación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, y examinado el aprendizaje del estudiante en el análisis cognitivo, en el aná-lisis de instrucción vamos a estudiar qué medios dispone el profesor para lograr sus fines. El foco de atención será la enseñanza. Se trata de hacer una descripción de los medios que va a poner en práctica el profesor para lograr sus expectativas de aprendizaje.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La estadística se ha convertido en un instrumento fundamental del análisis de datos en las diferentes áreas de conocimiento. Bajo la necesidad de transmitir una herramienta que se relacione con los resultados obtenidos, su enseñanza debe tener en cuenta el marco en el cual se validan los resultados. Proponemos un análisis de los diferentes aspectos involucrados en este proceso. Se espera realizar una descripción de los correspondientes marcos de referencia en los cuales se tiene en cuenta tanto la naturaleza epistemológica de los contenidos, los planos cognitivo y didáctico, todos ellos enmarcados en aspectos socioculturales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En años recientes, un cuerpo creciente de investigaciones en didáctica de las matemáticas han identificado algunas dificultades en relación con el aprendizaje de contenidos temáticos, procesos y contextos relacionados con el pensamiento espacial y sistemas geométricos, siendo comúnmente atribuidas a causas de orden epistemológico, cognitivo, curricular y didáctico. En este sentido se revela como prometedor el estudio del proceso de integración al currículo y a las prácticas escolares, de recursos, concretamente lo que se refiere a materiales manipulativos. Esto con la intención de fortalecer en los estudiantes los conocimientos adquiridos para resolver algunos problemas de su entorno escolar y cotidiano, a medida que avanza su proceso de aprendizaje.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La investigación que reportamos, da cuenta de un estudio sobre la comprensión del concepto Elipse en estudiantes entre 16 y 18 años, bajo un enfoque cognitivo, donde se utiliza los modos de pensamiento de Anna Sierpinska como marco teórico y, estudio de casos como diseño metodológico. Nuestra problemática se sitúa al abordar la elipse solamente a través de las ecuaciones cartesianas, afirmamos que estas técnicas no son suficientes para lograr una comprensión profunda del concepto, cuando decimos comprensión profunda, estamos pensando en que el estudiante pueda comprender la elipse en los modos: Sintético-Geométrico (como sección cónica en el espacio/curva que la representa en el plano), Analítico-Aritmético (como pares ordenados que satisfacen la ecuación de la elipse) y Analítico - Estructural (como lugar geométrico). A lo largo de la investigación evidenciamos que los estudiantes logran una mayor comprensión del concepto elipse cuando se enfrentan a situaciones donde interactúan los tres modos de pensar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se reportan resultados de investigaciones sobre el concepto de límite, particularmente aquellas centradas en el aspecto cognitivo, y estos, tanto en el nivel medio superior como en el nivel superior. Estas investigaciones las clasificamos en tres grupos: las que tratan el preconcepto de límite, sobre las concepciones que se tienen del concepto de límite y las que reportan dificultades al tratamiento del concepto de límite. Algunos de los resultados de estas investigaciones es que el preconcepto está asociado a “una barrera no rebasable”; en cuanto a las concepciones sobre el concepto están las que se relacionan con “valor inalcanzable”, “como aproximación”, entre otras; y algunas dificultades como al redactar la definición del límite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La idea que motiva el presente trabajo se refiere a entender cómo generalizan los estudiantes de bachillerato y qué tipo de pensamiento les permite hacerlo, para ello planteamos a un grupo de estudiantes del IEMS actividades donde se debe identificar un patrón que predice una secuencia geométrica, como un primer acercamiento a la idea de generalización. Este patrón debe ser descrito de forma algebraica (fórmula). En este artículo mostraremos dos tipos de formulaciones distintas construidas por los estudiantes para abordar el problema con distintos tipos de pensamiento que nos permiten mirar aspectos que podrían determinar el éxito o fracaso del desarrollo cognitivo puesto en marcha por los estudiantes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El siguiente estudio se enmarca en el dominio afectivo matemático, realizando un análisis de las actitudes, creencias y nivel de pensamiento de dos poblaciones específicas: una población de estudiantes activos cuyas edades oscila entre los 15 y 18 años y, una población de personas adultas que en algún momento estudiaron el bachillerato. Se concluye que ambas poblaciones presentan actitudes similares hacia la matemática escolar y existe una posible relación entre los dominios cognitivo-afectivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El problema de investigación se plantea en cómo utilizar el Cabri II Plus para lograr la transposición didáctica de la noción de límite a contextos computacionales, transposición informática (Balacheff, 1994). Construyendo límites de sucesiones y límites de funciones, visualizamos el concepto permitiendo la comprensión de la definición formal, la validación de propiedades y enunciados matemáticos y la activación de un proceso cognitivo marcado por la relación dialéctica entre percepción y conceptualización durante la interacción con la interfase del sistema (Moreno, 2002), promoviendo una transformación a nivel epistemológico de la experiencia matemática del estudiante. Las actividades propuestas articulan las representaciones algebraicas, gráficas y numéricas de la noción de límite, a través del movimiento, visualizando el cambio gracias a la geometría dinámica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La periodicidad como propiedad es identificada de manera natural por los individuos y resulta habitual el uso de los significados creados de forma compartida y que éstos se trasladen en contextos diferentes en donde son aplicados. Los resultados obtenidos en investigaciones como Buendía (2004, 2005a) y Alcaraz (2005) aportan no sólo elementos de corte cognitivo, sino herramientas que fungen como argumentos válidos en el reconocimiento de la naturaleza periódica. Lo periódico puede conformar todo un lenguaje, abarcando los ámbitos culturales, históricos e institucionales y procurándole un carácter útil al conocimiento matemático. La unidad de análisis es el elemento que tiende un puente entre un tratamiento empírico de la periodicidad y uno científico (Montiel, 2005), lo cual favorece una construcción significativa del conocimiento matemático. Nuestro marco teórico es la aproximación socioepistemológica la cual centra su atención en el examen de las prácticas sociales, entendidas como las acciones o actividades realizadas intencionalmente con un objetivo de transformación y con ayuda de herramientas que favorecen la construcción del conocimiento matemático, incluso antes que estudiar a los conocimientos mismos.