12 resultados para CAMBIOS GLOBALES DE TEMPERATURA - ASPECTOS SOCIOECONOMICOS
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Se muestran los resultados de una encuesta sobre las opiniones del profesorado de Matemáticas de secundaria en Galicia, relativa a la instrucción sobre el concepto de "Límite funcional" En esta comunicación se presentan sólo tres aspectos relacionados con el tema de una investigación más amplia: El profesorado opina sobre el nivel adecuado en que considera se debería impartir la noción de límite de funciones en los itinerarios del Bachillerato o en la ESO; se identifican algunos referentes que utiliza en su introducción, y finalmente, se recuentan instrumentos, técnicas y herramientas que el profesorado utiliza habitualmente en la instrucción de este objeto matemático. Transversalmente se trata de ver en qué grado el contexto general del aula condiciona las estrategias, herramientas y procedimientos.
Resumo:
La formación inicial de los docentes se constituye como un proceso de vital importancia para las definiciones de una educación de calidad, la cual es una necesidad vigente. Tal y como afirma Esteve (2009) los cambios de la sociedad y sus efectos en el ámbito educativo se convierten en un elemento esencial para orientar el trabajo de los profesores, ya que los nuevos desafíos y exigencias del entorno marcan las pautas para diseñar el proceso formativo de los mismos y el camino para su desarrollo profesional. Considerando este desafío nos dimos a la tarea de elaborar, implementar y analizar un diseño instruccional centrado en estudiar y promover el aprendizaje de la razón y la proporcionalidad, desde un enfoque funcional del conocimiento matemático. En esta conferencia compartiré los aspectos fundamentales del experimento de enseñanza que desarrollamos para lograrlo.
Aprender matemáticas en un entorno de álgebra computacional: los obstáculos constituyen oportuniades
Resumo:
Utilizar álgebra computacional no es tan fácil como puede parecer. Frecuentemente, los estudiantes encuentran obstáculos mientras trabajan en un entorno de álgebra computacional. En este artículo se distinguen los obstáculos globales y los locales, y se identifican los de ambas categorías. La teoría de la instrumentación proporciona un marco para interpretar el obstáculo como un desequilibrio entre los aspectos conceptual y técnico de un esquema de instrumentación. Se argumenta que explicitar los obstáculos y tratar de superarlos, conduce al desarrollo conceptual. En consecuencia, los obstáculos constituyen oportunidades de aprendizaje.
Resumo:
Se presenta un análisis sobre los propósitos de la investigación del discurso matemático escolar, los tipos de discursos que se desarrollan en el aula, así como las contribuciones que ofrecen los estudios en este campo, particularmente, en la reconstrucción del discurso matemático escolar.
Resumo:
Presentamos los resultados de un estudio histórico sobre los cambios curriculares en libros de texto de matemáticas con la introducción del Sistema Métrico Decimal en España durante la segunda mitad del siglo XIX. El estudio se orientó por el método histórico y el Análisis Didáctico como herramienta para el estudio de libros de texto históricos. Esto ha permitido caracterizar la inclusión de este sistema metrológico en libros de texto para primaria, secundaria y la formación de maestros mediante la identificación y descripción de la estructura conceptual, los procedimientos, representaciones y contextos con que se incluyó a las unidades de pesas y medidas métrico-decimales en los tópicos de aritmética. El estudio proporciona antecedentes históricos e información relevante para comparar y caracterizar la enseñanza y el aprendizaje de la aritmética enfocando el SMD en el currículo español desde su implantación hasta la actualidad.
Resumo:
El estudio de la matemática permite la modelización de situaciones que conducen a la resolución de problemas. Por esto, es primordial que los estudiantes analicen los cambios que ocurren en diferentes fenómenos biológicos, económicos y sociales. Sin embargo, durante la escuela media, no se favorece demasiado el desarrollo del pensamiento y lenguaje variacional, base para la comprensión de los conceptos de la matemática de la variación y el cambio, es decir el cálculo. Por este motivo, este trabajo, enmarcado en el proyecto de investigación “Pensamiento y lenguaje variacional: bases para la construcción de conceptos del cálculo diferencial”, tiene como objetivo el análisis y valoración de los resultados obtenidos en una experiencia de aula centrada en el diseño, implementación y corrección de una guía de actividades que indaga las nociones que tienen los alumnos que ingresan al nivel universitario con respecto a variables, cambios, funciones, imagen, gráficas, expresión analítica, valor numérico y comportamiento de funciones.
Resumo:
Con el objeto de mejorar la apropiación de herramientas para el pensamiento variacional, el presente trabajo presenta indagaciones realizadas en torno a gráficas de variación en el tiempo, en especial aquellas de distancia en el tiempo. Entendemos que construir aprendizajes implica introducir al estudiante en prácticas matemáticas que potencien las nociones a construir, por ello reconocer las situaciones en que las gráficas distancia‐tiempo y, en particular el tiempo, son necesarios para comunicar y trabajar concambios, se torna central. El presente reporte da cuenta de experiencias exploratorias con base en la necesidad de comunicar cambios, recurriendo a representaciones gráficas, de modo de constatar en qué situaciones se representa al tiempo en tales gráficas.
Resumo:
Asumiendo que la evaluación debe estar integrada en el proceso de enseñanza-aprendizaje, estamos desarrollando una investigación con profesores de matemáticas de secundaria en Bogotá (Colombia), para analizar sus concepciones y prácticas acerca de la evaluación sobre la resolución de problemas en matemáticas. Partimos de un cuestionario que indaga sobre la importancia que se da a diferentes aspectos cognitivos y afectivos, y al hecho de evaluarlos. Se identifica que en la evaluación de la resolución de problemas se continúa priorizando la evaluación de aspectos del dominio cognitivo, sobre el afectivo. Y en el dominio cognitivo se hace un mayor énfasis sobre los aspectos propios del conocimiento matemático que sobre las estrategias heurísticas.
Resumo:
Se pone de manifiesto la necesidad de que el profesor gestione la construcción de significado en el aula y lo haga a partir de las interpretaciones que pueda inferir de los aportes verbales de los estudiantes durante el proceso. Se muestra que la construcción de significado de una definición que un profesor podría despachar muy rápidamente (señalando un error, repitiendo la definición y pidiendo a los estudiantes que se fijen bien en ella para reformular la representación de la situación en la que el objeto definido se pone en juego), está lejos de ser un asunto baladí. En el segundo ejemplo que se presenta es posible ver cómo la gestión del profesor en pro de la construcción de significado de un objeto geométrico (en este caso, el enunciado del Teorema Localización de Puntos), no se agota en el momento en que se enuncia y demuestra el Teorema sino que se requiere también en momentos en que se usa en el marco de la resolución de un nuevo problema.
Resumo:
En el contexto del modelo de Van Hiele, se ha llevado a cabo un estudio comparativo de dos colecciones de descriptores para el mismo concepto: El de aproximación local en su manifestación de la recta tangente a la gráfica de una curva en un punto. A partir de las visualizaciones que se obtienen de los mecanismos llamados "haz de secantes" y del "zoom", se concluye que, en efecto, el nivel de razonamiento es independiente de la forma de abordar el concepto, de ese mecanismo particular usado para acercarse al mismo.
Resumo:
Hoy en día las matemáticas que se imparten en la enseñanza secundaria tienen, en gran medida, un carácter fundamentalmente analítico. Esta es una de las causas por las que nuestros alumnos son capaces de resolver determinados problemas y salvar dificultades mediante procesos mecánicos cuya justificación matemática no conocen plenamente y no tienen, por consiguiente, una representación precisa del problema que tratan.
Resumo:
Este trabajo consta de dos partes: la primera presenta, de manera elemental, la teoría de los polinomios de Bernstein en una variable; la segunda esta dedicada a curvas de Bezier y q-trazadores ("q-splines"). Nos parece importante el uso que se puede dar del software Mathematica.