18 resultados para Al-c-o
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Se presenta en este capítulo un trabajo de investigación en el que se ha estudiado el uso que hacen unos alumnos de educación secundaria del razonamiento inductivo, cuando se les propone resolver un problema que no les resulta familiar. Para ello se ha elegido una tarea para cuya resolución es apropiado utilizar dicho razonamiento. Se han llevado a cabo entrevistas a los alumnos en el momento en el que realizaban la tarea, e ir explicando sus razonamientos. La preparación teórica básica de la investigación, el desarrollo de la actividad, así como los resultados obtenidos, constituyen el contenido de este documento.
Resumo:
El objetivo general de la investigación es describir y caracterizar el razonamiento inductivo empleado por estudiantes de tercero y cuarto de Educación Secundaria Obligatoria en la resolución de problemas que pueden ser modelizados mediante una progresión aritmética de números naturales cuyo orden sea 1 o 2. El principal aporte teórico de este trabajo es la elaboración de un modelo de razonamiento inductivo que ha permitido describir el proceso seguido por los estudiantes. El procedimiento para la identificación y descripción de las estrategias en la resolución de problemas en los que se puede utilizar el razonamiento inductivo es un aporte metodológico destacado. Los 359 estudiantes participantes resolvieron una prueba individual escrita compuesta por seis problemas. El análisis de las producciones de los estudiantes permite obtener resultados sobre los pasos de razonamiento inductivo que emplean y las estrategias que utilizan.
Resumo:
Esta investigación presenta la puesta en práctica de una propuesta pedagógica para apoyar la enseñanza del Cálculo mediante la resolución de problemas a nivel preuniversitarioen Costa Rica. El proyecto tiene su origen en las dificultades que presentan los estudiantes en la comprensión de conceptos básicos de Cálculo, específicamente el de límite y derivada. Esta experiencia se fundamentó en la elaboración de una “situación problema” que provocó un conflicto intelectual en los estudiantes, mientras que el docente fungió como mediador y aprovechó los descubrimientos hechos por los estudiantes para fundamentar teóricamente los diferentes conceptos luego de la aplicación de la propuesta. Los resultados obtenidos son muy positivos y justifican la necesidad de un cambio en las estrategias metodologías utilizadas para enseñar el Cálculo. Sin embargo, es necesario un acercamiento de los docentes hacia la Teoría de Resolución de problemas para aplicar con éxito este tipo de actividades.
Resumo:
El presente reporte de investigación de tipo cualitativo, tiene por objeto dar a conocer, como parte de la investigación, resultados relacionados con los procesos de generalización que se presentan en alumnos de edades 14-15 años al tratar con sucesiones figurativas, en donde el patrón matemático se comporta en forma lineal y cuadrática. Se señala que el hacer uso de patrones, desarrolla el pensamiento algebraico, así como también permite a los estudiantes desarrollar la comprensión del concepto como establecer relaciones matemáticas. Como parte de la perspectiva teórica se ha empleado el Modelo Teórico Local, considerando tres de los cuatro componentes: Competencia formal, modelo de enseñanza y procesos cognitivos.
Resumo:
Este trabajo tuvo por objetivo determinar lo que han comprendido sobre ecuaciones algebraicas los alumnos, al finalizar la escuela secundaria e ingresar en la universidad. Para ello, analizamos las producciones escritas de 55 alumnos aspirantes a ingresar a una carrera de nivel universitario, posicionándonos en el Enfoque Ontosemiótico del conocimiento y la instrucción matemática, como marco teórico y metodológico de la Didáctica de la Matemática. Analizar la comprensión que tienen los alumnos sobre las ecuaciones, nos llevó a determinar si reconocen el campo de problemas en que se involucra este objeto matemático, aplican y recuerdan (implícitamente en la mayoría de los casos) los conceptos, propiedades y procedimientos que se requieren para llevar a cabo exitosamente las tareas, y utilizan lenguaje y argumentos apropiados en sus explicaciones. Como resultado final, obtuvimos una aproximación a la configuración cognitiva de cada estudiante, lo que permitió valorar la comprensión que tienen sobre el objeto matemático en cuestión.
Resumo:
En esta investigación pretendemos obtener una mayor información relativa al conocimiento de los profesores de matemáticas, en particular, al conocimiento del contenido y estudiantes (KCS, por sus siglas en inglés –Knowledge of Content and Student ) mientras éstos se encuentran inmersos en su propia práctica. Nos enfocamos en un modelo del conocimiento matemático para la enseñanza (MKT, por sus siglas en inglés – Mathematical Knowledge for Teaching ). Es un estudio de 2 casos, los instrumentos de recogida de información son: observación de aula, cuestionarios y entrevistas a los dos casos. Finalmente, aportamos distintos indicadores del KCS que pueden ser considerados para identificar y comprender el KCS, éstos pueden ayudar a analizar a otros profesores o ser considerados en la formación del profesorado de bachillerato.
Resumo:
El objetivo principal de este trabajo surge por la inquietud de estudiantes y profesores de Institutos de Educación Universitaria en Venezuela (Universidad Simón Bolívar, Universidad Nacional Abierta, Universidad Nacional Experimental de las Fuerzas Armadas, Universidad Pedagógica, entre otras); así como también los comentarios de algunos colegas de Universidades en Costa Rica y República Dominicana, donde se observa con gran preocupación el rechazo que presentan y plantean muchos profesores en el área de las matemáticas al uso e implementación de las tecnologías en sus programas y contenidos programáticos. Luego de realizar los estudios y corroborar el grado de analfabetismo tecnológico existente en los profesores de matemática, se consideraron elaborar cursos, diplomados y talleres para involucrar a nuestros docentes en el uso de las tecnologías.
Resumo:
En el presente trabajo se comparte una experiencia de aula que se realiza, utilizando el Origami, para introducir el trabajo con funciones cuadráticas, con estudiantes de la media académica. En el proceso de iniciación al cálculo, se estudió la relación entre el plegado de papel y la geometría, al desarmar un módulo cuadrado y analizar las cicatrices que quedan en él. Se relacionaron algunos elementos matemáticos presentes en el módulo, con los conceptos matemáticos que emergieron en las cicatrices y se analizaron algunas propiedades de los poliedros. Esto permitió el estudio de conceptos como rectas paralelas y perpendiculares, bisectrices y mediatrices y familias de poliedros, relacionando el área lateral de los poliedros con el tamaño del módulo y con el número de éstos, lo que llevó al estudio de familias de funciones, haciendo el tránsito por diferentes sistemas semióticos de representación y al interior de algunos de estos, llevando a los mismos estudiantes a que le asignaran significado y sentido a los conceptos estudiados, al poderlos manipular.
Resumo:
Frecuentemente, se hace énfasis en la enseñanza y aprendizaje de las matemáticas movilizar diversos registros de representación de una misma gestión. Sin embargo, el tratamiento de conversión de una representación en una representación de otro registro no es fácil y en ocasiones hasta imposible. Al respecto, Duval (1988) señala: “cuando se efectúa la conversión ecuación → gráfico no surge ninguna dificultad, pero todo cambia cuando se hace la conversión inversa”. Este aporte es muy sobresaliente e induce a investigar la naturaleza de esta problemática. En este sentido, nuestro trabajo de investigación está enfocado en identificar algunas dificultades que puedan presentar los estudiantes al tratar de poner en correspondencia el registro gráfico con el algebraico. Para ello, se aplicaron actividades donde se exponen algunos valores visuales de la gráfica, con el fin de establecer una correspondencia entre esos valores visuales de la recta y su respectiva escritura algebraica, así como, establecer un sistema para las diferentes categorías de tres rectas en el plano.
Resumo:
En el siguiente artículo se propone un acercamiento numérico y gráfico al concepto de derivada y de función derivada. Para ello se propone iniciar introduciendo las ideas de diferencias, incrementos y razón de incrementos. El que esto escribe diseño y desarrollo un software de apoyo a la introducción de estas ideas. Para abordar la temática se exponen ideas teóricas, una exposición de lo propuesto en el software y algunos resultados obtenidos.
Resumo:
Este trabajo presenta el diseño de dos secuencias didácticas en forma de prácticas de laboratorio fundamentadas en resultados de investigaciones en matemática educativa de corte socioepistemológico. Se busca favorecer el uso inteligente de la tecnología (calculadoras graficadoras) en el aula de matemáticas así como un acercamiento entre el profesor y alumno de matemáticas para con la investigación en matemática educativa.
Resumo:
En el marco de la convocatoria desde la Secretaria de Políticas Universitarias del Ministerio de Educación Ciencia y Tecnología de la República Argentina para realizar proyectos cuya meta el Apoyo a las Escuelas Medias, se presentó desde la Facultad Regional Tucumán – Universidad Tecnológica Nacional, el proyecto “Desarrollo de un Sistema de Vinculación e Innovación para Mejorar la Relación entre la Propuesta Educativa de la Escuela Media, y el Mundo del Trabajo en las Comunidades de Inserción de las Instituciones Involucradas”. Para obtener información sobre la comunidad educativa involucrada en el Proyecto, se decidió diseñar diferentes encuestas a ser aplicadas a los alumnos, docentes , graduados y directivos. Este trabajo aporta, entonces, una descripción de los resultados obtenidos en la encuesta aplicada a los alumnos de las diferentes escuelas participantes en el Proyecto.
Resumo:
El presente trabajo muestra algunas de las experiencias obtenidas en la puesta en práctica del proceso didáctico que propone el programa EMAT –Hidalgo con un grupo de docentes que imparten la asignatura de matemáticas en el nivel de educación secundaria modalidad técnica. La investigación permitió identificar el tipo de relaciones entre profesores y estudiantes al incorporar el uso de las tecnologías computacionales en el ámbito escolar. Para ello, se hicieron entrevistas, encuestas y observaciones en los tres grados de educación secundaria.
Resumo:
La raíz cuadrada desempeña un papel fundamental en todos los niveles escolares, desde los básicos hasta los universitarios. La presente investigación se centra en estudiar este concepto desde el punto de vista de la aritmética, posteriormente del álgebra y por ultimo del cálculo, mediante el análisis de libros de texto y la aplicación de un cuestionario desde el nivel básico hasta el superior. Finalmente mostraremos concepciones específicas relativas a la raíz cuadrada que permanecen en los estudiantes.
Resumo:
Ante la problemática que presenta la enseñanza y el aprendizaje de los conceptos del cálculo diferencial y también al surgimiento de herramientas computacionales capaces de graficar y realizar derivación simbólica y manipulaciones algebraicas, se requiere una reflexión crítica sobre cómo se puede utilizar la tecnología para apoyar la enseñanza y el aprendizaje del cálculo. En este artículo, se hace una propuesta didáctica que se ha implementado en un sistema computacional y un libro que la implementa. El acercamiento se apoya fuertemente en actividades con polinomios a través de los cuales se puede apreciar el poder del cálculo diferencial sin demérito de considerar situaciones suficientemente complejas.