12 resultados para Ámbitos subnacionales

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A partir de la historia de la matemática se pueden diseñar actividades que favorezcan la formación humanística y matemática de nuestros estudiantes. En este caso se presentan algunos acercamientos de la civilización China a la noción de aproximación, y con base en estos se muestra parte de una actividad que busca fortalecer la comprensión de esta noción básica del cálculo. Este trabajo es un producto parcial del grupo de estudio en Historia de la Matemática del Departamento de Matemáticas del Colegio Gimnasio Moderno. En este momento el grupo centra su atención en el estudio de desarrollos históricos que estén relacionados con nociones básicas del Cálculo como aproximación, variación, optimización y predicción; así como en el diseño de actividades que favorezcan la comprensión de estas nociones. La razón por la cual nos interesa el Cálculo, es porque es una de las áreas de la matemática que mayor dificultad presenta a los estudiantes, ya que sus conceptos se basan en nociones de inexactitud y cambio que evidentemente chocan con la concepción tradicional de la matemática como una ciencia exacta. Por ejemplo, la comprensión del concepto de límite en un sentido riguroso es extremadamente difícil y casi imposible para los estudiantes debido a que la noción en la que se sustenta, la aproximación, produce tal incertidumbre que los mismos profesores la han expulsado de aquella variedad de nociones básicas que deben ser enseñadas en la escuela. Pero además, la estructura conceptual de ésta noción es tan compleja, que requiere de un tiempo prolongado y del uso de diferentes vías didácticas para ser plenamente comprendida (García et al., 2002). Haciendo un estudio de los desarrollos matemáticos de la civilización China nos encontramos con que en ella se establecieron algunos procedimientos de aproximación para calcular áreas de regiones curvilíneas, así como un método para aproximar tanto como se quiera la raíz cuadrada de un número; también obtuvieron la fórmula del volumen de la esfera por un método que antecede a la técnica de Cavalieri en doce siglos aproximadamente. Este taller pretende por una parte, mostrar los acercamientos de la civilización China a algunas nociones básicas del cálculo, específicamente la aproximación y la variación; así como hacer evidente la presencia de procesos infinitos en algunos desarrollos matemáticos de esta civilización. Por otra parte, busca presentar algunas actividades diseñadas desde una perspectiva histórica, es decir, un diseño que resalta la dimensión humana del conocimiento matemático, sus conexiones con otros ámbitos de la cultura, el contexto en el que nace y evoluciona, y por supuesto, que busca fortalecer la formación matemática de nuestros estudiantes. En la primera sesión, mostraremos los acercamientos a las nociones básicas de aproximación y/o variación de la civilización China. En la segunda sesión presentaremos algunas actividades inspiradas en los desarrollos de las civilizaciones anteriormente mencionadas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el presente artículo se considera el tema de la proporcionalidad en distintos niveles y dentro de ámbitos diferentes. En primer lugar, se trata la proporción en el campo de las ecuaciones mediante unos ejemplos extraídos de la historia de las matemáticas. En segundo lugar, se presentan ejemplos relativos a las proporciones en temas de geometría plana y medida de ángulos dentro de un contexto astronómico. En dicho marco, se elabora una maqueta del sistema solar y, posteriormente, se estudian los movimientos de la Tierra para determinar su periodo de rotación y calcular, según la precesión terrestre, estrellas candidatas a ser "la polar del futuro", esto es, la estrella más próxima al polo norte celeste. En general, el artículo muestra diversas actividades que cabe desarrollar dentro del aula, en un ambiente de taller, con miras a potenciar la interdisciplinariedad y el contacto de las matemáticas con el mundo real.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se presenta una experiencia desde la práctica intensiva que se llevó a cabo en el colegio Francisco José de Caldas en los grados segundo y tercero de primaria, en la cual se retoma en conjunto los diferentes énfasis y teorías abordadas en el proceso de formación docente, como son: planeación de actividades, recursos didácticos, gestión docente y evaluación, basados en referentes teóricos como el Grupo DECA, la Teoría de las situaciones didácticas de Brousseau y el trabajo colaborativo. Se reconoce cómo el aporte de cada uno de éstos, proporciona avances y logros en diferentes ámbitos; además, se da a conocer el modelo propio de actividad matemática implementado en el aula por las practicantes, para ello se presenta la organización de los momentos de la clase y los aportes del mismo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el marco del programa de Examen de Estado para ingreso a la Educación Superior del ICFES, se ha venido desarrollando la evaluación de competencias en diferentes áreas del conocimiento desde el año 2000, y se ha constituido en tema de permanente discusión y reflexión de distintos ámbitos de la educación en el país. Con este taller se propone ampliar la discusión sobre esta evaluación de competencias en matemáticas como son los ejes conceptuales y las competencias interpretativa, argumentativa y propositiva.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En esta réplica a la ponencia presentada por la profesora Sánchez-Matamoros, y después de unas consideraciones personales, se destaca su trayectoria investigadora centrada en analizar la comprensión del concepto de derivada abarcando los ámbitos de aprendizaje (en alumnos de secundaria) y de enseñanza (en futuros profesores de matemáticas). Se señalan sus aportaciones en el marco de la teoría APOE reflejadas en numerosas publicaciones y su aplicación al campo de la formación de profesores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la presente investigación se problematiza la organización de saberes matemáticos asociados a contenidos del Precálculo desde una perspectiva socioepistemológica, en la que se asume que los procesos de construcción, difusión e institucionalización de conocimiento se corresponden con un contexto específico. Por ende se analizaron variables socioculturales de contexto asociadas al uso y construcción de conocimiento matemático en ámbitos no escolares y en el escenario escolar. En éstos se reconoció el papel de la práctica, la dimensión social de la matemática y la actividad humana como condiciones socioculturales para la reorganización y construcción de saberes matemáticos en Precálculo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La periodicidad como propiedad es identificada de manera natural por los individuos y resulta habitual el uso de los significados creados de forma compartida y que éstos se trasladen en contextos diferentes en donde son aplicados. Los resultados obtenidos en investigaciones como Buendía (2004, 2005a) y Alcaraz (2005) aportan no sólo elementos de corte cognitivo, sino herramientas que fungen como argumentos válidos en el reconocimiento de la naturaleza periódica. Lo periódico puede conformar todo un lenguaje, abarcando los ámbitos culturales, históricos e institucionales y procurándole un carácter útil al conocimiento matemático. La unidad de análisis es el elemento que tiende un puente entre un tratamiento empírico de la periodicidad y uno científico (Montiel, 2005), lo cual favorece una construcción significativa del conocimiento matemático. Nuestro marco teórico es la aproximación socioepistemológica la cual centra su atención en el examen de las prácticas sociales, entendidas como las acciones o actividades realizadas intencionalmente con un objetivo de transformación y con ayuda de herramientas que favorecen la construcción del conocimiento matemático, incluso antes que estudiar a los conocimientos mismos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uno de los objetivos del presente trabajo es detectar los motivos por los cuales el concepto de promedio aritmético está tan arraigado en el estudiante que no puede desprenderse de él y lo interpola a otros ámbitos del quehacer matemático, específicamente al probabilístico. Se busca entender, mediante la línea de investigación conocida como la construcción social del conocimiento matemático, por qué los alumnos tienen problemas en aceptar y reconocer al valor esperado, conocido también como media o esperanza matemática, como un promedio en un nuevo escenario con nuevas características.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este reporte trata de una investigación cooperativa cuyo tema es la comparación de la enseñanza de la geometría en Chile y en Francia (proyecto ECOS-CONYCIT). Después de definir nuestra metodología por zooms sucesivos, presentamos las mayores diferencias que encontramos entre los dos países. Estas diferencias conciernen a los ámbitos siguientes: la concepción de la geometría, los aspectos de la actividad matemática puestos en evidencia, la organización del aprendizaje, la extensión de los programas, la importancia dada a las aplicaciones de matemáticas y a la modelación. Los trabajos de C.Houdement y A.Kuzniak sobre los paradigmas geométricos nos permiten analizar las concepciones de la geometría.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interesa a este estudio detectar modos de razonamiento matemático propiciados en los alumnos desde las prácticas docentes de los profesores. Se pretende hacer un estudio de casos en donde se identifiquen estos razonamientos. Algunas de las preguntas guía de este estudio son: ¿Qué relación hay entre los propósitos de la asignatura con el perfil de egreso de la educación media superior? ¿De que manera influye la formación del profesor en su práctica docente y que modos de razonamiento desarrolla dentro de esta? ¿Qué es lo que busca el profesor en la bibliografía y qué fuentes consulta y dónde las consulta? ¿Cuál es la dinámica ambiental dentro del aula? ¿qué tipo de actitudes se generan en el aula? ¿se favorecen sujetos críticos y reflexivos, con la posibilidad de expresarse y de preguntarse? ¿Qué tipo de actitudes muestran los alumnos? bajo la perspectiva de los modos de pensamiento analizados por Sierpinska, quien maneja los modos geométrico–sintético, analíticoaritmético y analítico-estructural. Frente a los altos índices de reprobación de los alumnos de Bachillerato General en la asignatura de Álgebra, surge el desafío para los docentes de reemplazar la memorización por una comprensión más profunda. Lo que se pretende es que las matemáticas sean, para el estudiante, herramientas funcionales y flexibles que le permitan resolver las situaciones problemáticas que se le planteen, en diversos ámbitos. A la perspectiva técnica se opone la perspectiva práctica, a los dos puntos de vistas mencionados se agrega un nuevo enfoque: estratégico, donde las actividades educativas están históricamente localizadas, las cuales tienen un lugar, sobre un trasfondo socio histórico y proyectan una visión de la clase de futuro que deseamos construir.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La sociedad actual demanda a su sistema educativo una formación estadística que capacite a sus ciudadanos para entender, comprender y resolver, la diversidad de información y problemas surgidos desde diversos ámbitos e interpretarlos en los contextos culturales que se presenten. En consecuencia, las curriculas educativas han incrementado sus contenidos estadísticos, desde la enseñanza primaria, hasta la universitaria, destacando la necesidad de la enseñanza de la estadística como una valiosa herramienta de la metodología científica. Un buen ejemplo lo constituye la estructura curricular del Sistema Educativo Argentino que a partir de 1995 establece la escolaridad obligatoria en 10 años, incluyendo la estadística desde los primeros cursos del nivel inicial. La formación básica en estadística ha sido encomendada, en los niveles no universitarios, a los profesores de matemáticas que generalmente no han recibido capacitación específica en el área. Para los profesores que se encuentran en esta situación, la enseñanza de la estadística supone un problema debido a que se requieren conocimientos, destrezas y experiencias en el tratamiento y elaboración de información que demanda: la selección de técnicas e instrumentos que mejor se adapten a los datos, la flexibilización para cambiar procedimientos, la interpretación adecuada de los resultados y la capacidad para evaluar la validez y fiabilidad de las conclusiones extraídas. Ser capaz de dominar esta actividad o enseñarla a un grupo de estudiantes no es una tarea simple, necesita de preparación previa y cierta experiencia. Holmes (2002) indica que, puesto que las lecciones de estadística, dentro de los libros de matemática han sido generalmente escritas por matemáticos, el objetivo preferente de las mismas es la actividad matemática y no la actividad estadística. Esta puede ser la razón por la cual prevalece la idea de que la estadística que se enseña en las escuelas o niveles básicos universitarios no refleja suficientemente la naturaleza eminentemente práctica de esta disciplina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cuzco, Ámsterdam: ciudades reales, visibles y circulares como Bram, en Francia, y la Connaught Place de Nueva Delhi, en India. La retícula de calles rectilíneas, ortogonal o no, es a la vez huella y símbolo de la forma urbana. En ocasiones inspira nombres numéricos para sus calles. En Nueva York, desde el sur de Manhattan hasta el Bronx, las calles paralelas al eje E-O se ordenan y nombran según los números naturales (de la 1st a la 242th street). De igual modo, las avenidas perpendiculares que discurren N-S van de la 1a a la 11a, comenzando por el Este. No tan extensa es la retícula de Mandalay, en Myanmar, donde 90 de las calles N-S están numeradas de Este a Oeste, y 44 de sus perpendiculares de Sur a Norte. En la retícula de Miramar (Argentina) las calles en una dirección reciben nombres pares; las otras, impares. No es extraño que en ámbitos tan geométricos como los de esas ciudades nombre y número se confundan.