145 resultados para ANÁLISIS MATEMÁTICO
Resumo:
En los últimos años y particularmente desde la aparición de los lineamientos curriculares (1998) el estudio de la educación estadística ha recobrado gran importancia para la formación de nuestros estudiantes, tanto de la educación básica como de la media y la superior. Este interés por formar una cultura estadística en los alumnos, se sustenta, desde nuestro punto de vista en tres cuestiones,igualmente importantes: 1. La necesidad social de formar ciudadanos capaces de comprender información codificada en lenguaje matemático. 2. El uso extendido de las nociones de probabilidad, azar, etc, presentes tanto en el conocimiento científico como en el conocimiento humano en general. 3. La responsabilidad de la escuela en general de ser un agente de formación para los nuevos ciudadanos. Desde estas posturas, encontramos importante señalar que la educación estadística tiene pues que abordar por lo menos los siguientes campos de formación: el análisis de datos, el tratamiento del azar y la probabilidad. En lo relativo al análisis de datos nos proponemos construir una propuesta que se diferencie de lo que hasta ahora hemos emprendido en los currículos escolares, tal es, el estudio de la estadística descriptiva en cuyo caso el énfasis en la enseñanza se centra en la ejercitación de los cálculos rutinarios resueltos con lápiz y papel, como son: gráficos, tablas, frecuencias, medidas y por último verificación de modelos. Alternativa a esta perspectiva nos proponemos utilizar el análisis exploratorio de datos enfatizando en la conceptualización sobre aspectos tales como la lectura crítica de datos, el uso de diferentes representaciones, el establecimiento de las similitudes (regularidades) y las variaciones, es decir, establecer un procedimiento de análisis que use los datos como el contexto de significado
Resumo:
Es nuestro interés en este curso discutir algunos aspectos teóricos y metodológicos relativos a la objetivación del conocimiento matemático, específicamente el relacionado con el concepto de función y con el concepto de parábola. Haremos esta discusión desde algunos resultados obtenidos de la investigación “El conocimiento matemático: desencadenador de interrelaciones en la aula de clase”. En dicho estudio empleamos una metodología a la luz del paradigma cualitativo, bajo un enfoque crítico-dialéctico y desde una investigación colaborativa. Nos apoyamos teóricamente en autores que asumen una perspectiva sociocultural de la Educación y de la Educación Matemática, por ejemplo, Bajtin (2004, 2009), Caraça (1984), Moura (2001, 2010) y Radford (2004, 2006, 2008). Este estudio nos posibilitó comprender, entre otras ideas, que los conceptos que cada alumno objetivó con respecto al objeto función y al objeto parábola no fueron únicos; como no pueden serlo el proceso de objetivación, ni los conceptos mismos.
Resumo:
En el marco del programa de Examen de Estado para ingreso a la Educación Superior del ICFES, se ha venido desarrollando la evaluación de competencias en diferentes áreas del conocimiento desde el año 2000, y se ha constituido en tema de permanente discusión y reflexión de distintos ámbitos de la educación en el país. Con este taller se propone ampliar la discusión sobre esta evaluación de competencias en matemáticas como son los ejes conceptuales y las competencias interpretativa, argumentativa y propositiva.
Resumo:
En los últimos años del siglo pasado y específicamente desde la promulgación de la Ley General de Educación, las políticas educativas en Colombia han tenido como meta la solución del problema de la baja calidad de la educación; por esta razón se han promovido cambios y se ha prestado especial interés a la evaluación como estrategia primordial para conseguir ese propósito. A través de la evaluación se pretende mejorar los niveles de aprendizaje de los estudiantes y enriquecer el desarrollo profesional de los maestros. Pero la forma de concebir la evaluación no ha cambiado mucho y la manera como se lleva a cabo, poco o nada contribuye en la formación de personas para lograr un nivel adecuado dentro de una sociedad democrática.
Resumo:
La enseñanza y aprendizaje de temas matemáticos como la proporcionalidad directa usualmente se realiza modelando situaciones “reales” y “cotidianas”. Los profesores de matemáticas asumimos que tales situaciones se comportan en efecto de forma proporcional, pero en la realidad su comportamiento es diferente. Ello nos lleva a la tarea de identificar en la cotidianidad de los estudiantes, situaciones que se dejen modelar a través de funciones lineales, tarea difícilmente realizable, pero altamente formativa.
Resumo:
Este estándar recomienda que los estudiantes formulen preguntas que puedan ser resueltas usando la recolección de datos y su interpretación. Los estudiantes podrán aprender a coleccionar datos, organizar sus propios datos o los de los demás, y disponerlos en gráficas y diagramas que sean útiles para responder preguntas. Los conceptos básicos de probabilidad se pueden manejar de mano de los conceptos estadísticos.
Resumo:
Esta investigación que forma parte de las tesis de maestría, se realiza en México con estudiantes de secundaria, de edades 14-15 años. El objetivo es dar a conocer las dificultades; que a partir de un análisis comparativo, tienen los alumnos al tratar de construir una expresión algebraica de segundo orden que defina el enésimo término al usar sucesiones figurativas. Para ello, se ha estado haciendo uso de dos de sus cuatro componentes del Modelo Teórico Local [MTL] (Filloy, 1999): modelo de enseñanza y de procesos cognoscitivos. Se realiza una evaluación diagnóstica, se clasifica a la población según los distintos perfiles: alto, medio y bajo rendimiento, para observar en entrevista clínica videograbada y elaborar un reporte de observaciones acorde al esquema de desarrollo de experimentación perteneciente al MTL.
Resumo:
En el siguiente escrito se describe una propuesta didáctica para introducir a los estudiantes al concepto matemático de la derivada. Esta propuesta se basa en la idea de variación la cual es representada en contextos numéricos, físicos y gráficos. La representación y manipulación de las ideas matemáticas en juego durante el desarrollo de la propuesta se ven apoyadas en el uso de dispositivos tecnológicos tales como calculadoras gráficas y un sensor de movimiento.
Resumo:
En este artículo se presenta la posibilidad de introducir algunos temas de Matemáticas de secundaria o bachillerato, como pueden ser, entre otros, la combinatoria, los cuerpos geométricos o incluso el propio número complejo, mediante la utilización del juego icosaédrico. Para ello se indica en primer lugar una breve biografía del descubridor de este juego: Sir William Rowan Hamilton, que pueda servirle al profesor como apoyo histórico para conseguir una mayor motivación del alumno a la hora de afrontar sus clases de Matemáticas; se muestran seguidamente las reglas de este juego, haciendo especial hincapié en las ventajas que puede ofrecer su uso en las clases de Matemáticas de Secundaria, fundamentalmente a la hora de introducir la Combinatoria; y se comentan también, finalmente, algunos otros juegos relacionados con el citado, que pueden ser utilizados por el profesor como soporte lúdico en la impartición de sus clases.
Resumo:
El objetivo de esta charla es presentar algunos resultados recientes sobre teorías elementales en matemáticas para el desarrollo del talento en matemáticas. En particular, se mostrarán algunos resultados relacionados con la teoría de grafos y la teoría reticular, ambas, teorías matemáticas que han venido siendo adaptadas por el Grupo Yaglom de la Universidad Sergio Arboleda para los cursos de pretalentos y talentos en matemáticas.
Resumo:
A partir de este trabajo se busca establecer una relación entre el análisis epistemológico de la matemática y los procesos de enseñanza-aprendizaje de la geometría, centrados en un estudio de los problemas que históricamente han fundamentado la integral, desde la postura de resolución de problemas, las ventajas e implicaciones para el trabajo en el aula, el docente y el estudiante. Se hace una presentación del trabajo realizado geométrica y analíticamente para obtener las fórmulas del cálculo de área y volumen de algunas figuras, encaminado a un estudio sobre la importancia del tratamiento de situaciones problema para la enseñanza de la geometría, partiendo de los aportes que desde las situaciones históricamente abordadas se pueden realizar al conocimiento del profesor y los aspectos que puede tener en cuenta para orientar la enseñanza.
Resumo:
En este documento, se presentarán las etapas para diseñar un Modelo Instruccional en ambientes virtuales interactivos para la enseñanza de los números Reales, que tiene en cuenta: la formación matemática de los estudiantes, sus “niveles”, sus ritmos de aprendizaje, sus obstáculos en el aprendizaje y el tiempo oficial propuesto por la institución educativa para abordar los temas. Además, se explicitan, organizan y relacionan muchos de los elementos que se conjugan, y se camuflan, en la enseñanza y el aprendizaje de los temas matemáticos. Este diseño plantea ciertos elementos para el análisis del Discurso Matemático, del discurso didáctico y toma ciertos resultados de las investigaciones en Educación Matemática (Taxonomía SOLO y la Teoría de Súperítemes entre otras) para poner en relación los niveles en el discurso didáctico con los niveles de abstracción de los estudiantes.
Resumo:
En este trabajo, presentamos los resultados de investigación de una tesis de maestría realizada en México. Nuestro objetivo fue indagar cómo los estudiantes del Nivel Medio Superior, analizan secuencias de crecimiento visual, con base en representaciones gráficas, así como la forma en que expresan algebraicamente el patrón que subyace a una secuencia; teniendo como supuesto que el análisis visual organizado de las secuencias puede contribuir a la detección, formulación y generalización de patrones. Con base en nuestros resultados, afirmamos que la visualización juega diferentes papeles dentro del proceso de generalización, los cuales identificamos y clasificamos a la luz de la Teoría de la Objetivación y la Teoría de la Representaciones Semióticas. Proponemos una herramienta para discutir el papel y funcionamiento de la visualización en la generalización de patrones.
Resumo:
El objetivo de este trabajo de investigación es identificar las organizaciones praxeológicas que permiten la articulación de la noción de función afín con otras nociones tanto en el contexto matemático como extramatemático en la Educación Media en Brasil. Los análisis se apoyan en la Teoría Antropológica de lo didáctico de Chevallard (2001) y los enfoques teóricos en términos de marcos definidos por Douady (1992) y niveles de conocimiento que se esperan de los estudiantes según la definición de Robert (1997). Tres libros de texto que fueron analizados darán una visión general de las relaciones institucionales que sobreviven actualmente en Brasil. Observamos la existencia de diferentes formas de articulación que dependen de las técnicas desarrolladas, necesitando la atención de profesores que deben proponer el mayor número posible de situaciones para que sus estudiantes puedan aplicar la noción de función afín en diferentes tareas, sean ellas escolares o no.
Resumo:
Presentamos los resultados de un estudio histórico sobre los cambios curriculares en libros de texto de matemáticas con la introducción del Sistema Métrico Decimal en España durante la segunda mitad del siglo XIX. El estudio se orientó por el método histórico y el Análisis Didáctico como herramienta para el estudio de libros de texto históricos. Esto ha permitido caracterizar la inclusión de este sistema metrológico en libros de texto para primaria, secundaria y la formación de maestros mediante la identificación y descripción de la estructura conceptual, los procedimientos, representaciones y contextos con que se incluyó a las unidades de pesas y medidas métrico-decimales en los tópicos de aritmética. El estudio proporciona antecedentes históricos e información relevante para comparar y caracterizar la enseñanza y el aprendizaje de la aritmética enfocando el SMD en el currículo español desde su implantación hasta la actualidad.