81 resultados para ESTUDIANTES DE EDUCACIÓN MEDIA
Resumo:
tema en el contexto educativo colombiano, llevan a que dos profesores de matemáticas de educación básica y media, se den a la tarea de diseñar y desarrollar una propuesta para la superación de sesgos en el razonamiento probabilístico de sus estudiantes. De esta manera, en el marco de la investigación-acción, se recoge la experiencia y reflexión de tres implementaciones de aula consecutivas: La primera con estudiantes de grado décimo, cuyo énfasis estuvo dado en el enfoque clásico de probabilidad, que llevó a que los estudiantes no tuvieran cambios significativos en sus argumentaciones respecto a los fenómenos de probabilidad; la segunda con estudiantes de grado séptimo, donde el enfoque fue netamente experimental, convirtiéndose en un obstáculo para desarrollar procesos de institucionalización del saber, que permitieran a los estudiantes formalizar algunos conceptos. Las reflexiones suscintas a esta experiencia llevaron al desarrollo de una tercera, también con estudiantes de grado séptimo, pero en otra institución, donde se construyó de manera conjunta y horizontal con los estudiantes una situación problema abierta a los dos enfoques de probabilidad (clásico y experimental) que permitió desarrollar las actividades de acuerdo al avance de cada grupo en el proceso de resolución. De ésta manera se contribuyó en forma significativa a la superación de sesgos probabilísticos, y se consolidó para nosotros un instrumento modelo para la enseñanza de las matemáticas.
Resumo:
En este trabajo se pretende evidenciar, mediante experiencias de aula, que la estrategia metodológica de Resolución de Problemas planteadas por Pólya (1965), Shoenfeld (1985) y Brousseau (1986), desarrolla competencias básicas, genéricas y específicas. Los resultados muestran que las actividades de resolución de problemas planteadas promovieron la comprensión lectora, el trabajo en equipo, la capacidad de razonamiento y argumentación frente a sus compañeros/as, la capacidad lógica de reconocimiento, el descubrimiento de patrones, exploración de problemas similares, reformulación de problemas, trabajo hacia atrás, la participación activa de los estudiantes y el desarrollo de líderes (Espinoza, et al., 2008)
Resumo:
En la presente experiencia de aula se mostrarán los aspectos que hicieron necesario trabajar con los estudiantes de grado undécimo las cónicas, en especial, la circunferencia, desde lo planteado por el Ministerio de Educación Nacional en los Estándares de Calidad y en los Lineamientos Curriculares, para luego ver la necesidad del uso del geoplano como recurso didáctico para la construcción del objeto matemático, partiendo de las dificultades que presentan los estudiantes en la construcción e identificación de las propiedades de las cónicas, especialmente de la circunferencia. Seguidamente, se expone la descripción general de la experiencia, los logros y dificultades que surgieron en el proceso de enseñanza y se finaliza con la reflexión que generó este proceso de enseñanza-aprendizaje.
Resumo:
El estudio de las magnitudes y su medida es de gran importancia, debido a su aplicabilidad y uso en una gran cantidad de actividades de la vida cotidiana; así por ejemplo, frecuentemente es necesario tomar decisiones acerca de situaciones como: el tamaño de unos muebles, de modo que resulten acordes con el tamaño de una habitación, y la forma de acomodarlos para que la longitud de las dimensiones del objeto se acoplen a la puerta de dicha habitación; si el espacio disponible en un parqueadero es suficiente para estacionar o no un vehículo; la cantidad de papel o de cualquier otro material, necesario para realizar un determinado trabajo; cálculo o estimación de la distancia entre dos puntos; etc.; casos en los cuales se hace necesario recurrir a un cierto conocimiento y manejo de la magnitud longitud; en donde se puede considerar que la construcción de este concepto es un proceso que requiere la interacción entre los estudiantes y las situaciones del entorno, en el cual se encuentran objetos con características susceptibles de ser medidas, de las cuales la longitud, será el interés en este documento. Pero si cotidianamente se utiliza este concepto, podría surgir la pregunta ¿Los estudiantes han construido completamente el concepto longitud?
Resumo:
El Modelo Curricular de la República Argentina incluye como uno de sus objetivos prácticas cooperativas en la Educación Secundaria. El presente trabajo desarrolla un proyecto para dar lugar a la estimulación de las habilidades interpersonales a través de actividades para la clase de Matemática correspondiente a la etapa de formalización de estructuras conceptuales-procedimentales, apoyadas en los Pilares del Cooperativismo, con una concepción de Educación para la Libertad, la Justicia y la Solidaridad.
Resumo:
La enseñanza de la Geometría es una ramificación de las Matemáticas que tiene una importancia fundamental en el razonamiento de los chicos y chicas de cualquiera nivel de la Educación Básica. El presente artículo tiene como objetivo presentar los resultados obtenidos de la evaluación diagnostica de Geometría Euclidiana Plana en los alumnos de Enseñanza Medio Superior. La metodología utilizada ha sido la Cuantitativa con Estudio Descriptivo. La muestra ha sido compuesta de 534 alumnos de cuatro escuelas particulares de Enseñanza Mediana de Belém – Pará – Brasil. Ha sido aplicado un cuestionario con cinco cuestiones básicas de Geometría. Los resultados muestran que los discentes están llegando en la enseñanza medio superior con poco o casi ningún conocimiento de Geometría.
Resumo:
Esta comunicación presenta resultados parciales de un estudio de dos casos (en España y Armenia), que ha tratado de conocer la importancia que tienen las oportunidades de aprendizaje (OTL) que ofrece el profesor en su aula (particularmente, en este documento tratamos el tipo de tareas que éste selecciona y propone) a la hora de facilitar la adquisición de las competencias matemáticas (CM) de sus estudiantes. Tomamos la información de observaciones de clases y entrevista (a dos profesores de Educación Secundaria) y de prueba (a los estudiantes de 15 años) y realizamos análisis de datos combinando técnicas cualitativas y cuantitativas. Los resultados de nuestra investigación, relativos al tipo de tareas, han constatado una fuerte relación de las CM de los estudiantes con la oportunidad de resolver cierto tipo de tareas (demanda cognitiva y situaciones/contextos en las que se plantean).
Resumo:
La estrategia didáctica es uno de los resultados de la investigación que realiza el grupo de matemática educativa de la Universidad de Camagüey. Tiene como objetivo diseñar una estrategia didáctica para favorecer la formación y el desarrollo de la competencia organizar e interpretar el conocimiento matemático en los estudiantes de la carrera Ingeniería Informática de la Universidad de Camagüey. La misma centra sus resultados científicos fundamentales en un modelo teórico para la formación y desarrollo de la competencia organizar e interpretar el conocimiento matemático. En esta estrategia didáctica para favorecer la formación y el desarrollo de la competencia organizar e interpretar el conocimiento matemático en los estudiantes de la carrera Ingeniería Informática presenta un set de instrumentos e indicadores para evaluar la formación y el desarrollo de la competencia organizar e interpretar el conocimiento matemático. En el desarrollo de la investigación se utilizaron diferentes métodos, y la implementación se realizó en dos grupos de esta facultad con resultados satisfactorios. Con esta investigación se contribuye al Perfeccionamiento de la Educación Superior.
Resumo:
Una preocupación constante del sector educativo es la calidad de la educación que se oferta en nuestros países, las organizaciones internacionales han instrumentado mecanismos (Pisa, TIMSS, Excale, Enlace) para medir el logro académico en los niveles educativos básicos de los países agremiados, en general los resultados de estas pruebas, establecen que en el área de las matemáticas el alumnado de escuelas públicas de la educación secundaria en México tiene en promedio resultados que les ubican en los niveles de logro insuficiente y elemental. Estos resultados indican carencias graves en esta asignatura, que se enfatizan aún más cuando se analizan los resultados que obtienen las mujeres. Este trabajo forma parte de una investigación más amplia que tuvo como propósito profundizar en los factores que inciden en el nivel de logro matemático que tienen las y los estudiantes de 3° grado de secundaria.
Resumo:
En este trabajo presentamos el estudio semiótico de las respuestas de estudiantes mexicanos de Educación Secundaria y Bachillerato con el fin de detectar conflictos semióticos sobre la comprensión del concepto de mediana. Se observa mayor dificultad en ambos grupos al resolver estos problemas de un cuestionario sobre medidas de tendencia central. Utilizamos el Enfoque Onto‐Semiótico propuesto por Godino y colaboradores. Clasificamos las respuestas en categorías de los conflictos semióticos encontrados y comparamos los resultados en ambos grupos de estudiantes.
Resumo:
En este artículo la problemática que abordamos es la que surge de la desvinculación de los contextos escolares y el entorno social, nuestra intención es investigar las prácticas de modelación que los estudiantes de nivel medio con bachillerato técnico clínico y estudiantes de nivel superior de la carrera de ingeniería bioquímica, ejercen al investigar un problema social: la contaminación del río de la sabana. Hacemos énfasis en observar cómo aprenden los estudiantes y las prácticas que ejercen al investigar una problemática social.
Resumo:
La presente investigación surge en el programa “perfeccionamiento en matemática para profesores de enseñanza media” realizado en el IUFM le Mirail, Universidad de Toulouse, Francia. El estudio consiste en el diseño de una propuesta didáctica para el aprendizaje de la ecuación vectorial de una recta en el espacio, en estudiantes de 16 a 18 años, el interés nace por la incorporación de estos temas en el curriculum nacional. Para el diseño de la propuesta se utiliza elementos de la Teoría Antropológica de lo Didáctico (TAD), donde se entenderá como organización matemática, a un conjunto de tipos de tareas, de técnicas o procedimientos para resolver estas tareas y de definiciones, propiedades y teoremas que permitan describir y justificar la resolución de la tarea. Entre los elementos que aportan en el surgimiento de la organización matemática, se distinguen, tipos de tareas como, establecer si puntos del plano o el espacio son colineales y determinar las condiciones para que un tercer punto sea colineal a dos puntos dados, en el plano o en el espacio.
Resumo:
En ese trabajo se analizan las respuestas de estudiantes de secundaria a tareas numéricas susceptibles de resolverse haciendo uso de sentido numérico. Se analizan las estrategias y los razonamientos de sentido numérico frente a los procedimientos algorítmicos y de aplicación de reglas. Se observa cómo el uso del sentido numérico queda condicionado por dificultades y errores en conceptos numéricos propios de niveles básicos y por el tipo de actividad. Las tareas con enunciados semejantes a los tradicionales presentan mayor aparición de reglas y algoritmos.
Resumo:
Este estudio tiene como objetivo examinar cómo los futuros profesores de secundaria (EPS) reconocen evidencias de la comprensión del proceso de generalización en estudiantes de secundaria. Los EPS realizaron dos tareas: (1) describir las respuestas dadas por estudiantes de secundaria a dos problemas de generalización lineal y agrupar las que reflejaban características comunes de la comprensión del proceso de generalización; (2) participar en un debate virtual sobre las características de la comprensión del proceso de generalización. Los resultados indican que la participación en el debate virtual permitió a los EPS centrar su mirada en las ideas que subyacen en el proceso de generalización (generalización cercana y lejana e intento de expresar la regla general, pasando de una estrategia aditiva a una funcional) más que en el procedimiento realizado.
Resumo:
El artículo “El Número en la Escuela”presenta avances de investigación realizados por estudiantes de la Maestría en Docencia de las Matemáticas de la Universidad Pedagógica Nacional como parte de sus respectivos trabajos de grado. El primero, referido a la formación de docentes de preescolar y primeros grados de educación primaria sobre Estructura Aditiva, expone la forma en que abordar dicha estructura contribuye al proceso de construcción del número Natural en los primeros grados de escolaridad. El segundo, basado en el modelo del profesor Carlo Federici, estudia la construcción de los números racionales como operadores sobre magnitudes, específicamente, sobre longitudes cuya representación son los segmentos. Y el tercero, permite reflexionar sobre el acercamiento al concepto de número real con estudiantes de Secundaria y Media.