70 resultados para estudiante trabajador


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La investigación que reportamos, da cuenta de un estudio sobre la comprensión del concepto Elipse en estudiantes entre 16 y 18 años, bajo un enfoque cognitivo, donde se utiliza los modos de pensamiento de Anna Sierpinska como marco teórico y, estudio de casos como diseño metodológico. Nuestra problemática se sitúa al abordar la elipse solamente a través de las ecuaciones cartesianas, afirmamos que estas técnicas no son suficientes para lograr una comprensión profunda del concepto, cuando decimos comprensión profunda, estamos pensando en que el estudiante pueda comprender la elipse en los modos: Sintético-Geométrico (como sección cónica en el espacio/curva que la representa en el plano), Analítico-Aritmético (como pares ordenados que satisfacen la ecuación de la elipse) y Analítico - Estructural (como lugar geométrico). A lo largo de la investigación evidenciamos que los estudiantes logran una mayor comprensión del concepto elipse cuando se enfrentan a situaciones donde interactúan los tres modos de pensar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo tuvo por objetivo determinar lo que han comprendido sobre ecuaciones algebraicas los alumnos, al finalizar la escuela secundaria e ingresar en la universidad. Para ello, analizamos las producciones escritas de 55 alumnos aspirantes a ingresar a una carrera de nivel universitario, posicionándonos en el Enfoque Ontosemiótico del conocimiento y la instrucción matemática, como marco teórico y metodológico de la Didáctica de la Matemática. Analizar la comprensión que tienen los alumnos sobre las ecuaciones, nos llevó a determinar si reconocen el campo de problemas en que se involucra este objeto matemático, aplican y recuerdan (implícitamente en la mayoría de los casos) los conceptos, propiedades y procedimientos que se requieren para llevar a cabo exitosamente las tareas, y utilizan lenguaje y argumentos apropiados en sus explicaciones. Como resultado final, obtuvimos una aproximación a la configuración cognitiva de cada estudiante, lo que permitió valorar la comprensión que tienen sobre el objeto matemático en cuestión.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la sociedad educativa actual no se puede considerar al uso de las TIC’s como una opción más, sino como una importante necesidad para lograr un aprendizaje más propio en el estudiante, siendo este el constructor de su conocimiento. El objetivo del presente taller es el conocer al programa gratuito GeoGebra como una potente herramienta para el aprendizaje y enseñanza de la matemática. Para esto se realizarán construcciones diversas en el área de la geometría y funciones, con el fin de conocer el funcionamiento del programa para luego aterrizar en lo que respecta a elaboración de guías de trabajo para estudiantes y docentes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el presente artículo se presentan los resultados del análisis de formas y usos del conocimiento matemático que subyacen en torno a ciertas prácticas en una comunidad de Biología Marina y en el área de producción de una empresa. Se trata de un estudio socioepistemológico que se llevó a cabo para identificar el papel del contexto en el uso y funcionalidad de dicho conocimiento en escenarios no escolares, con el propósito de reconocer condiciones socioculturales que posibiliten la transferencia del conocimiento escolar al entorno del estudiante.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo de investigación tiene por objetivo la obtención de indicadores para la organización de saberes matemáticos correspondientes al área de Precálculo, Geometría y Álgebra de nivel medio. Para la consecución de éste, se realiza en primera instancia un estudio documental el cual permitiera generar un estado del arte de propuestas didácticas generadas en Matemática Educativa en la última década, seguido de un estudio descriptivo cuyo objetivo es identificar aquellos elementos que caracterizan las propuestas como favorecedores de la construcción del conocimiento matemático. Particularmente nos centraremos en los resultados obtenidos al momento en el área de Precálculo, entre los cuales se tiene que las propuestas didácticas parecen tener en común el que la construcción del conocimiento se dé a través de la práctica humana y el carácter científico de los conocimientos matemáticos, como son: la predicción, la visualización y la modelación. La tecnología ya no es un recurso para el profesor sino una herramienta para el estudiante.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durante muchos años en el sistema educativo se consideró el proceso de enseñanza aprendizaje de las matemáticas como una actividad ubicada en el aula, siendo el único espacio donde el que sabe, el profesor, dota de conocimientos al que aprende, el alumno. Este tipo de enseñanza, sin considerarla mala, trae como consecuencia que al enfrentar al estudiante a un problema real tenga dificultades para su solución. En este artículo se reporta parte de una investigación cuyo objetivo fue a entender el conocimiento que surge en la interacción entre dos contextos diferentes: uno el matemático y el otro el derivado de un área técnica en particular. Se describe el conocimiento de un grupo de enfoque relativo al campo conceptual de un sistema de ecuaciones lineales con dos incógnitas en el contexto del balance de materia. La aproximación cognitiva del campo conceptual de interés, se ha realizado sustentado en la Teoría de Campos Conceptuales de Vergnaud y se trabaja con la Matemática en el Contexto de las Ciencias como marco de referencia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los mapas conceptuales se pueden emplear como una técnica de estudio y como una herramienta para el proceso de enseñanza y aprendizaje de las matemáticas, permitiendo al docente explorar los conocimientos previos que sus estudiantes tienen frente a un tema específico, favoreciendo la construcción de relaciones y organización de conceptos, fomentando la reflexión, el análisis y la creatividad. La implementación de los mapas conceptuales en investigaciones relacionadas con el aprendizaje y la enseñanza de las matemáticas, han mostrado que éstos ponen de manifiesto los procesos de razonamiento seguidos por el estudiante, evidenciando las conexiones entre los conceptos matemáticos que pueden dar lugar a proposiciones válidas o no válidas y a diferentes niveles jerárquicos, que a su vez, proporcionan una visión sobre el nivel de comprensión que poseen, tanto profesores como estudiantes, en dichos conceptos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las competencias matemáticas se refieren al dominio, por parte del estudiante, de los conocimientos, habilidades, valores y actitudes que son indispensables tanto para la comprensión del discurso de las ciencias, las humanidades y la tecnología, como para su aplicación en la solución de los problemas de su vida escolar, social y laboral. El objetivo del presente trabajo fue identificar los niveles de competencias matemáticas adquiridos cuando se promueve el estudio de contextos evocados introductorios, que permitan explorar diversas representaciones. La experiencia educativa se llevó a cabo con un grupo de 45 alumnos, del nivel medio superior que cursaban la asignatura de álgebra, y cuya duración fue de 18 semanas. El análisis de los datos permitió identificar tres niveles de Competencias Matemáticas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el presente escrito, se reportan los resultados de un trabajo de investigación a nivel licenciatura, el cual se centró en el estudio de comportamientos gráficos en funciones algebraicas y trigonométricas, específicamente en f(x)=x , f(x)=x^2 ,f(x)=x^3 , f(x)=sen(x) y f(x)=cos(x), así como las transformaciones de cada una, considerando la expresión Y=Cf(ax+c)+D, con la intención de realizar comparaciones gráficas entre las funciones originales y las transformadas, el propósito general fue analizar si la presentación de funciones algebraicas y trigonométricas en diversos contextos (algebraico, visual, numérico y gráfico), permite al estudiante identificar comportamientos análogos y relacionar éstos con transformaciones gráficas. De acuerdo a los resultados obtenidos, concluimos que el estudiante al producir sus propias gráficas, éste logra identificar por si mismo comportamientos análogos entre las gráficas algebraicas y trigonométricas, además, el uso de diferentes registros de representación coadyuva al desarrollo de dichos resultados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uno de los problemas centrales que se presentan, para abordar el tema de límite, es sin duda cuando nos enfrentamos al concepto de infinito. Generalmente el docente al enseñar el concepto de infinito utiliza metáforas didácticas basadas en conjuntos muy grandes, esto para fijar la idea de infinitud. De acuerdo con la real academia española, esto permite crear la noción de infinito en un lenguaje cotidiano, lo que lleva a generar una mala formación de este concepto, dentro de un lenguaje matemático, ya que la imprecisión del lenguaje cotidiano hace ver al concepto de infinito muy vago y se aleja de la idea matemática como unidad total (Ortiz, 1994). El interés de nuestro trabajo se centra precisamente en el diseño de actividades, donde el estudiante pueda realizar y observar un proceso infinito, a través de ejemplos geométricos donde se presente la situación límite (proceso infinito culminado), permitiendo la formación del concepto de límite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo consistió en caracterizar los significados elementales y sistémicos a los protocolos de respuestas dadas por un estudiante sobre ecuaciones de segundo grado y los puestos de manifiesto, en relación al mismo tema, por los autores del libro de texto que se utilizó de apoyo a la enseñanza y aprendizaje. Para tal fin aplicamos la técnica del análisis semiótico, generada del modelo ontológico semiótico de la cognición e instrucción matemática (Godino, 2003 y Godino y Arrieche, 2001), que nos permitió determinar el significado institucional de referencia y el significado personal declarado. También se identificaron conflictos semióticos, es decir; discordancias entre los significados personales e institucionales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Con el objeto de mejorar la apropiación de herramientas para el pensamiento variacional, el presente trabajo presenta indagaciones realizadas en torno a gráficas de variación en el tiempo, en especial aquellas de distancia en el tiempo. Entendemos que construir aprendizajes implica introducir al estudiante en prácticas matemáticas que potencien las nociones a construir, por ello reconocer las situaciones en que las gráficas distancia‐tiempo y, en particular el tiempo, son necesarios para comunicar y trabajar concambios, se torna central. El presente reporte da cuenta de experiencias exploratorias con base en la necesidad de comunicar cambios, recurriendo a representaciones gráficas, de modo de constatar en qué situaciones se representa al tiempo en tales gráficas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El creciente uso de software de geometría dinámica 3-dimensional plantea nuevas cuestiones a los investigadores en Educación Matemática. Para aportar información sobre el aprendizaje de geometría espacial en esta disciplina mediante entornos de geometría dinámica 3-dimensional, y sobre posibles fortalezas y debilidades de tales entornos, presentamos resultados de una investigación experimental en la que se analiza cómo un estudiante de altas capacidades matemáticas aprende conceptos relativos a paralelismo entre rectas y/o planos en el espacio mediante la resolución de actividades en un entorno de Cabri 3D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El problema de investigación se plantea en cómo utilizar el Cabri II Plus para lograr la transposición didáctica de la noción de límite a contextos computacionales, transposición informática (Balacheff, 1994). Construyendo límites de sucesiones y límites de funciones, visualizamos el concepto permitiendo la comprensión de la definición formal, la validación de propiedades y enunciados matemáticos y la activación de un proceso cognitivo marcado por la relación dialéctica entre percepción y conceptualización durante la interacción con la interfase del sistema (Moreno, 2002), promoviendo una transformación a nivel epistemológico de la experiencia matemática del estudiante. Las actividades propuestas articulan las representaciones algebraicas, gráficas y numéricas de la noción de límite, a través del movimiento, visualizando el cambio gracias a la geometría dinámica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tecnología puede resultar un recurso didáctico para que los estudiantes examinen situaciones y problemas desde diversos ángulos, específicamente, el uso de software dinámico ofrece un medio útil para que ellos visualicen, exploren y construyan relaciones matemáticas. Estos apoyos modifican tan fuertemente el medio ambiente de trabajo que no basta con adaptar situaciones matemáticas clásicas, hay que concebir nuevas situaciones que tomen en consideración las potencialidades y las restricciones de la tecnología. Esto ha llevado a la creación de una génesis instrumental que estudia la construcción hecha por el estudiante cuando interactúa con un artefacto, convirtiéndolo en instrumento, a través de un proceso, de manera tal que se lo apropia y lo hace parte de su actividad matemática, actividad que en esta investigación está relacionada con el desarrollo del pensamiento covariacional.