49 resultados para PENSAMIENTO CRÍTICO LATINOAMERICANO
Resumo:
El estudio de la matemática permite la modelización de situaciones que conducen a la resolución de problemas. Por esto, es primordial que los estudiantes analicen los cambios que ocurren en diferentes fenómenos biológicos, económicos y sociales. Sin embargo, durante la escuela media, no se favorece demasiado el desarrollo del pensamiento y lenguaje variacional, base para la comprensión de los conceptos de la matemática de la variación y el cambio, es decir el cálculo. Por este motivo, este trabajo, enmarcado en el proyecto de investigación “Pensamiento y lenguaje variacional: bases para la construcción de conceptos del cálculo diferencial”, tiene como objetivo el análisis y valoración de los resultados obtenidos en una experiencia de aula centrada en el diseño, implementación y corrección de una guía de actividades que indaga las nociones que tienen los alumnos que ingresan al nivel universitario con respecto a variables, cambios, funciones, imagen, gráficas, expresión analítica, valor numérico y comportamiento de funciones.
Resumo:
En el ámbito de la investigación en Matemática Educativa son conocidas las dificultades que plantean la enseñanza y el aprendizaje de contenidos del cálculo. En la búsqueda de alternativas que favorezcan un desarrollo adecuado de métodos de pensamiento propios de la matemática, diseñamos y pusimos a prueba una secuencia didáctica para la introducción del concepto de derivada. Consideramos como hipótesis básica que el desarrollo de ideas variacionales puede propiciar una mejor comprensión y apropiación de esta noción, adoptando la posición de que el manejo de sistemas de representación es fundamental para la actividad cognoscitiva del pensamiento. Presentamos algunas de las actividades trabajadas en clase y un breve análisis sobre su implementación y las respuestas de los alumnos.
Resumo:
El presente trabajo tiene como objetivo principal observar y analizar el desarrollo del pensamiento variacional en estudiantes de los dos últimos años de bachillerato al intentar resolver situaciones problema que involucran situaciones funcionales de variación y cambio. Para ello se consideró el concepto de función como el objeto matemático que permite relacionar los conceptos matemáticos con otras áreas del currículo, planteados en situaciones de la vida real. Se consideraron dos grupos de trabajo, un grupo control y un grupo experimental; a ambos grupos se les aplicó un examen de reconocimiento, posteriormente, al grupo experimental se le aplicó una serie de talleres usando situaciones funcionales, enfatizando sobre su aplicabilidad en diferentes contextos y su relación con la vida real, finalmente se aplicó una prueba de contraste a ambos grupos de trabajo con el objeto de verificar los avances luego del trabajo en el aula.
Resumo:
La idea que motiva el presente trabajo se refiere a entender cómo generalizan los estudiantes de bachillerato y qué tipo de pensamiento les permite hacerlo, para ello planteamos a un grupo de estudiantes del IEMS actividades donde se debe identificar un patrón que predice una secuencia geométrica, como un primer acercamiento a la idea de generalización. Este patrón debe ser descrito de forma algebraica (fórmula). En este artículo mostraremos dos tipos de formulaciones distintas construidas por los estudiantes para abordar el problema con distintos tipos de pensamiento que nos permiten mirar aspectos que podrían determinar el éxito o fracaso del desarrollo cognitivo puesto en marcha por los estudiantes.
Resumo:
Esta investigación se efectúa en el marco de la reforma de la educación secundaria del 2006 en México y tiene como propósito mostrar los avances sobre la edificación de conocimientos matemáticos en los alumnos de primer año de secundaria, a través de los 5 bloques del año escolar, en los que figuran tres ejes de estudio que son: a) Sentido numérico y pensamiento algebraico, b) Forma, espacio y medida y c) Manejo de la información. Pero solo se estudiará el eje temático relacionado a pensamiento numérico y lenguaje algebraico, poniendo especial énfasis en una de las cuatro competencias que marca el programa: la competencia de la comunicación. Haciendo una comparación entre dos grupos de estudio, ya que en uno empleará el método tradicional y el otro utilizará el de inducción.
Resumo:
A decir de algunos especialistas en matemáticas y matemática educativa, lograr que los estudiantes tengan un entendimiento profundo del cálculo y con ello, contribuir al desarrollo de futuros ingenieros, matemáticos y científicos en general, precisa del favorecimiento de formas de pensamiento y lenguaje de naturaleza variacional, asociados al concepto función. En este sentido, en el presente escrito se describen algunas ideas y referentes teóricos que motivaron y guiaron la producción de un cuaderno de estudio sobre dicho concepto, como es el caso de la modelación matemática en tanto actividad y práctica matemática.
Resumo:
El siguiente estudio se enmarca en el dominio afectivo matemático, realizando un análisis de las actitudes, creencias y nivel de pensamiento de dos poblaciones específicas: una población de estudiantes activos cuyas edades oscila entre los 15 y 18 años y, una población de personas adultas que en algún momento estudiaron el bachillerato. Se concluye que ambas poblaciones presentan actitudes similares hacia la matemática escolar y existe una posible relación entre los dominios cognitivo-afectivo.
Resumo:
Con el objeto de mejorar la apropiación de herramientas para el pensamiento variacional, el presente trabajo presenta indagaciones realizadas en torno a gráficas de variación en el tiempo, en especial aquellas de distancia en el tiempo. Entendemos que construir aprendizajes implica introducir al estudiante en prácticas matemáticas que potencien las nociones a construir, por ello reconocer las situaciones en que las gráficas distancia‐tiempo y, en particular el tiempo, son necesarios para comunicar y trabajar concambios, se torna central. El presente reporte da cuenta de experiencias exploratorias con base en la necesidad de comunicar cambios, recurriendo a representaciones gráficas, de modo de constatar en qué situaciones se representa al tiempo en tales gráficas.
Resumo:
Se indaga en los desplazamientos entre herramientas de comunicación que ponen en juego profesores a la hora de comunicar qué y cómo cambia en una situación, en el marco de una línea de investigación en Pensamiento y Lenguaje Variacional (Proyecto Fondecyt Nº1030413 y Proyecto Diumce 06/07). Adscribimos a una mirada sistémica en la que entendemos a las matemáticas como una actividad humana en donde cobra vital importancia la persona haciendo matemáticas y no sólo el producto matemático. Por ello resulta relevante considerar -en la praxis educativa- las negociaciones y búsqueda de consenso entrelazadas éstas, con las acciones cognitivas de la persona al momento de enfrentarse a la solución de un problema. Asumimos una naturaleza de la noción de variación como red semántico operacional transversal, que imbrica distintos contenidos escolares de ciencia experimental y de matemática, particularmente aquellos de tiempo y velocidad. Entendemos al tiempo cotidiano formado por una red compleja de intencionalidades y coordinaciones que se estructuran a partir de las necesidades de coordinación con lo otro, con los otros y de las proyecciones intencionales hacia un futuro y un pasado, y, al tiempo matemático en su calidad de parámetro y figurado sobre la base de la metáfora de una distancia horizontal. A continuación se analizan, desde ese marco conceptual, las herramientas a que recurren profesores para comunicar cambios en una situación específica desarrollada en el marco las actividades del Proyecto de Investigación Las representaciones docentes del Cambio.
Resumo:
En este documento se caracterizan los usos de las gráficas. Se caracteriza su uso en la enseñanza tradicional, en los medios de comunicación, para el desarrollo del pensamiento y el uso social que se les da en las comunidades de profesionales o en la vida diaria de la gente. En la enseñanza tradicional son utilizadas como auxiliares didácticos que hacen posible la visualización de datos. Hoy día las gráficas son muy usuales en los medios de comunicación como recursos para transmitir información a núcleos poblacionales amplios, sin embargo las graficas socialmente compartidas requieren de lectores con una cultura amplia que les posibilite entenderlas y darles el sentido adecuado. Las graficas no solo son necesarias transmitir información, son útiles para favorecer el desarrollo del pensamiento y lenguaje variacional. Las habilidades como: la estimación, el cálculo, la predicción, el planteo de conjeturas, para identificar lo que cambia, para correlacionar cambios, para determinar las cualidades del cambio, etc. pueden contribuir al desarrollo de este tipo de conocimiento.
Resumo:
Los esquemas lógico-matemáticos desarrollados durante el crecimiento y formación dentro de un sistema educativo podrían influir y marcar cierta evolución sobre los sesgos del pensamiento probabilístico de los estudiantes, aun cuando éstos no reciban instrucción formal en probabilidades. Esta investigación ha sido realizada con 152 estudiantes de nivel medio entre 13 y 17 años. Los objetivos de la misma han sido: (a) identificar y analizar la influencia de esquemas lógico-matemáticos sobre sesgos intuitivos en juicios bajo incerteza cuando no existe conocimiento probabilístico formal y (b) analizar la evolución etaria de estos procesos. La metodología utilizada es mixta. Los instrumentos han sido cuestionarios con preguntas orientadas a la detección de algunos sesgos intuitivos y los esquemas actuantes.
Resumo:
Esta experiencia, abordó la problemática relacionada con el aprendizaje y la enseñanza de la geometría y en particular, el proceso de conceptualización y formulación de definiciones de objetos geométricos como los poliedros. El propósito de esta experiencia en la línea de la metodología estudio de clase (MEC), es el de planificar y orientar una clase que favorezca en los estudiantes la construcción del concepto de poliedro, desde principios pedagógicos y didácticos pertinentes y válidos. Su pertinencia radica en la generación de ambientes de aprendizaje alternativos, los cuales privilegian la construcción de conocimiento desde la interacción, además se favorece el proceso de conceptualización tan importante en el desarrollo del pensamiento y las competencias matemáticas.
Resumo:
Un poco de historia. Los cálculos eran la preocupación principal de nuestros antepasados, que promovieron el desarrollo de las matemáticas. Así nacieron los logaritmos, en los últimos años del siglo XVII. Decía Laplace en aquello años, “el uso de los logaritmos, acortó el trabajo y duplicó la vida de los astrónomos”. En los últimos años de la década 1970 a 1980 se popularizaron las calculadoras. Que no son tan viejas. Yo, no las use. En 1972 entre a la facultad de química y no tenía calculadora. Un año antes, me compre una de las mejores reglas de cálculo. Para usarla deberíamos saber tanto, que nos calificarían de genio en la actualidad ¿Cuál es entonces la premisa de mi pensamiento? “Saber matemática no es saber hacer cuentas”
Resumo:
El concepto de continuidad está íntimamente ligado a los de infinito y límite. En este trabajo se presenta primeramente un breve recorrido por las ideas que influyeron históricamente en la construcción matemática del concepto de continuidad a lo largo de la historia del pensamiento humano y se analizan las concepciones que sobre este concepto tienen los alumnos a las distintas edades, con la finalidad de clarificar ideas y buscar nuevas estrategias didácticas para abordar el tema del continuo.
Resumo:
Los obstáculos para operar con la visualización por parte de los estudiantes, a la hora de estudiar lo que varía, muestran la importancia de promover el desarrollo de una “inteligencia visual”. En especial la construcción de gráficas, dado que es una importante herramienta que permite a los estudiantes realizar una actividad matemática escolar y por tanto desarrollar un pensamiento matemático. Herramienta didáctica que ha ido, desde el surgimiento de la tecnología digital, cobrando mayor importancia en la investigación tanto matemática como en didáctica de las matemáticas. A modo de ilustración en el comportamiento tendencial (Cordero, 2001) de las funciones, un estudiante aprende a “identificar” coeficientes en la función, a “reconocer” patrones de comportamientos gráficos, a “buscar” tendencias en los comportamientos y a "relacionar” funciones.