34 resultados para FORMACIÓN INTEGRAL
Resumo:
Se pretende crear un marco de resolución de problemas que sea motivador para los alumnos del último año de Bachillerato o del primer año de estudios en la Universidad, y para ello se presentan cuatro problemas reales, cuya solución requiere establecer el concepto de integral definida, y uno histórico, que fue propuesto y resuelto por Arquímedes. Asimismo, en el desarrollo del curso se verá la importancia del uso de herramientas didácticas, tales como el generador de volúmenes de revolución, que se construirá en el propio curso, y el ordenador, cuyo uso será absolutamente necesario para resolver los problemas planteados. En suma, además de promover adaptaciones curriculares adecuadas, se fijan estos tres objetivos fundamentales: Cómo se crea un marco de resolución de problemas y cómo se integran herramientas didácticas apropiadas.
Resumo:
El propósito de este artículo es presentar una propuesta didáctica de la integral definida para la educación secundaria obligatoria y bachillerato a través de unas secuencias de aprendizaje que ayuden al estudiante a captar las ideas fundamentales del cálculo integral, del concepto de integral y del proceso de integración.
Resumo:
A partir del inicio del curso 87-88, un nuevo programa de matemáticas se puso en práctica en los colegios franceses. (87/88 para la clase (le 6°, 88/89 para la clase de 5°. etc ...) Hasta el momento presente, los programas venían etiquetados en términos de contenidos que había que enseñar, eventualmente acompañados por consideraciones generales relativas a los fines y objetivos globales. Estos programas describían más el comportamiento esperado del enseñante (defendiéndose de ellos como podía) que el del alumno.
Resumo:
Se repasa el planteo tradicional del criterio de la integral para la convergencia de series (con las hipótesis de que la función en cuestión sea continua, positiva y decreciente, y la conclusión de que la serie y la integral impropia convergen ambas o divergen ambas). Se muestran ejemplos en los que fallan una o más de las hipótesis y la conclusión del criterio falla. Se demuestra que son innecesarias las hipótesis de continuidad y positividad, y finalmente que basta con una condición aún más débil que la de que la función sea decreciente. Los resultados se aplican tanto a la equivalencia entre la convergencia de la serie y la convergencia de la integral impropia como a la fórmula para la cota del error en las sumas parciales cuando la serie converge.