107 resultados para Conocimiento matemático


Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este estudio, de orden cualitativo, se aplicó un cuestionario a 17 estudiantes con déficit auditivo, 18 a 24 años de edad, para obtener información sobre su comprensión de los números naturales, sus operaciones y sus relaciones básicas. Registrados en papel, los reactivos se presentaron en lengua escrita, con términos sencillos. Se prescindió de intérprete en la lengua de señas mexicana para identificar directamente posibles dificultades de comprensión de los conceptos matemáticos implicados; además, la aspiración de los participantes en el estudio al acceso a un bachillerato en línea impone su dominio de la lengua escrita. Los resultados indican el predominio de un razonamiento aditivo sobre el multiplicativo y, a lo más, una abstracción pseudoempírica en edades que en los normoyentes corresponden a las etapas del pensamiento formal. La escasa y deficiente producción en lengua escrita referida a los reactivos sugiere investigar el empleo del método de logogenia para su adquisición en conjunción con la del conocimiento matemático.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Presentamos una discusión a partir de resultados alrededor del uso de las gráficas sobre qué es lo que un alumno ve al trabajar con una gráfica tiempo-distancia y las implicaciones de dicha visualización en la construcción del conocimiento matemático.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este trabajo en proceso presentamos los resultados de la primera fase de nuestra investigación (análisis preliminar), que pretende reconocer a la práctica o la estrategia de la simulación que realizan los estudiantes al momento de resolver problemas de probabilidad y con ello las cuestiones en probabilidad será de gran sencillez teniendo a la herramienta de la simulación. En ello sostenemos que la práctica de la simulación enriquece al conocimiento matemático del ser humano y en particular a la probabilidad.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La periodicidad como propiedad es identificada de manera natural por los individuos y resulta habitual el uso de los significados creados de forma compartida y que éstos se trasladen en contextos diferentes en donde son aplicados. Los resultados obtenidos en investigaciones como Buendía (2004, 2005a) y Alcaraz (2005) aportan no sólo elementos de corte cognitivo, sino herramientas que fungen como argumentos válidos en el reconocimiento de la naturaleza periódica. Lo periódico puede conformar todo un lenguaje, abarcando los ámbitos culturales, históricos e institucionales y procurándole un carácter útil al conocimiento matemático. La unidad de análisis es el elemento que tiende un puente entre un tratamiento empírico de la periodicidad y uno científico (Montiel, 2005), lo cual favorece una construcción significativa del conocimiento matemático. Nuestro marco teórico es la aproximación socioepistemológica la cual centra su atención en el examen de las prácticas sociales, entendidas como las acciones o actividades realizadas intencionalmente con un objetivo de transformación y con ayuda de herramientas que favorecen la construcción del conocimiento matemático, incluso antes que estudiar a los conocimientos mismos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uno de los objetivos del presente trabajo es detectar los motivos por los cuales el concepto de promedio aritmético está tan arraigado en el estudiante que no puede desprenderse de él y lo interpola a otros ámbitos del quehacer matemático, específicamente al probabilístico. Se busca entender, mediante la línea de investigación conocida como la construcción social del conocimiento matemático, por qué los alumnos tienen problemas en aceptar y reconocer al valor esperado, conocido también como media o esperanza matemática, como un promedio en un nuevo escenario con nuevas características.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La teoría de instrucción matemática significativa basada en el modelo ontológico -semiótico de la cognición matemática denominado Teoría de las Funciones Semióticas (TFS ) proporciona un marco unificado para el estudio de las diversas formas de conocimiento matemático y sus respectivas interacciones en el seno de los sistemas didácticos (Godino, 1998 ). Presentamos un desarrollo de esta teoría consistente en la descomposición de un objeto, para nuestro modelo, la Continuidad, en unidades para identificar entidades y las funciones semióticas que se establecen, en el proceso de enseñanza y aprendizaje en una institución escolar, implementando un ambiente de tecnología digital (calculadora graficadora TI-92 Plus y/o Voyage 200).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabajo aporta elementos que robustecen la socioepistemología propuesta sobre lo periódico en la que la predicción es la práctica asociada a la construcción del conocimiento matemático. Además de trabajar en un contexto de funciones periódicas distancia-tiempo, se abordan otros contextos como las sucesiones periódicas de números y de figuras.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se reporta aquí un minicurso en el que participaron profesores de matemática de Enseñanza Media. Trabajando en un ambiente de Geometría Dinámica se aborda la resolución de problemas que involucran distintas áreas de la matemática: geometría métrica, cálculo diferencial, geometría analítica, álgebra, y que permiten poner de manifiesto la pertinencia y relevancia –así como señalar sus peculiaridades- del ambiente dinámico en la construcción del conocimiento matemático por parte de los participantes y a su vez discutir su papel en el trabajo con estudiantes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bajo la visión socioepistemológica, las prácticas sociales se reconocen como fundamentación del conocimiento matemático. Estas se reinterpretan para lograr su ingreso al sistema didáctico a través de situaciones en las que dichas prácticas se transforman en el argumento. Ello permite hablar de una resignificación del conocimiento matemático (periodicidad) en un contexto argumentativo (interpretación situacional de la práctica predicción). Nuestra propuesta es que lo periódico permitirá percibir articulaciones al seno del saber matemático.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El presente trabajo plantea el estudio del conocimiento matemático de la cultura maya desde la aproximación socioepistemológica, ya que se aporta una visión diferente de las que suelen abordarse en la literatura: antropológica o etnográfica entre otras. Se plantea el estudio de prácticas sociales que se encuentran en la cultura maya y que son a la vez generadoras de conocimiento matemático.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analizamos los registros de representación semiótica y las correspondientes funciones semióticas implícitos en la solución de dos problemas propuestos para la Educación Polimodal, que consideramos pueden ser utilizados en el proceso de enseñanza-aprendizaje de la noción resolución numérica de ecuaciones polinómicas, contemplada en los C.B.C. del mencionado nivel. Las representaciones juegan un rol fundamental en los procesos de construcción de conceptos, por lo que son importantes en la enseñanza, aprendizaje y comunicación del conocimiento matemático (Hitt, 1996). Con este análisis a priori, pretendemos ver cuáles de los registros de representación son de mayor peso para incorporar o darle sentido al concepto: Funciones polinómicas. Raíces de las correspondientes ecuaciones. Tratamos de responder a las preguntas: ¿Cuáles son los distintos registros de representación puestos en juego en la solución de cada problema?. ¿Cómo se suceden?. ¿Cómo aparecen y cuál es la necesidad de su conversión?. ¿Cómo se coordinan en la actividad conceptual? ¿En qué medida la presentación del tema desde una situación problemática es beneficiosa para incorporar y dar sentido a la determinación de las raíces de una ecuación polinómica?.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta sección encontrará sus lectores más inmediatos entre las personas vinculadas al mundo académico y matemático, pero lo ideal sería que estas páginas pudieran llegar más allá. Tú, lector, podrías ser quien concretara el sentido educativo de la sección invitando a tus alumnos, familiares y amigos a relacionar lo que ven con las matemáticas. Por el nivel de matemáticas necesario no deberían preocuparse, ya que se restringirá al de la E.S.O. y el Bachillerato. Todo lo que vemos son imágenes. Pensando en ellas buscamos en nuestro conocimiento modos de interpretarlas y entenderlas. Ahora se propone la reflexión sobre imágenes no con la intención de efectuar una descripción matemática gratuita de lo que se ve mediante la aplicación de conocimiento matemático, sino más bien al contrario: observar cómo las matemáticas pueden resultar imprescindibles para comprender lo que vemos. La idea es desvelar el trasfondo matemático subyacente en las imágenes, de ahí el título de la sección: imátgenes. Una iMATgen será una imagen portadora de matemáticas esenciales para su comprensión. Nada impide realizar un juego de palabras con un cariz biológico. Puesto que ante una misma imagen dos personas pueden dar interpretaciones diferentes, una imagen puede admitir dos iMÁTgenes distintas. Por eso ofrecemos la posibilidad de participar en la sección mediante el correo electrónico: "imatgenes.suma@fespm.org". Cualquier comentario, sugerencia o ayuda será bien recibida. Muchas gracias. ¡Que lo veáis bien!

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El analizar las relaciones epistemológicas entre prácticas sociales y el conocimiento matemático es uno de los objetivos de una aproximación teórica denominada socioepistemología. Esto permite informar acerca de cómo se construye dicho conocimiento desde una perspectiva de la actividad que desarrollan los humanos interactivamente y tomar en cuenta no sólo la producción matemática final, sino las herramientas y los argumentos que entran en juego. Una vez que se reconoce este origen social, podemos ver qué ocurre en sistemas didácticos por medio del diseño de secuencias cuyo origen es precisamente una socioepistemología del saber. La situación que se genera tiene pues la intención, de hacer patente la relación entre práctica y saber, en particular, entre la predicción y la periodicidad.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta propuesta didáctica se inscribe en la enseñanza, plantea un plan de intervención pedagógica para mejorar el rendimiento de los alumnos de cuarto grado, en la resolución de problemas matemáticos, reconociendo a éstos como un medio que permite al alumno llegar al conocimiento matemático por sus propios medios, respetando sus estrategias y canalizando sus conclusiones. El planteamiento de problemas se propone a través de dos modelos: el modelo generativo y el modelo de estructuración. En el primero, la operación queda subordinada al pensamiento, es decir, se pondera la estrategia como vía de solución y se busca, después, la operación válida para dar cuerpo al proceso de resolución. El modelo de estructuración, ayuda a constituir mentalmente las partes que componen el problema. En ambos modelos se considera al “desafío” (en este caso, acertijos) como elemento clave para motivar a los alumnos a la resolución de problemas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este reporte de investigación se presentan los avances de un proyecto acerca de las formas de construcción de conocimiento matemático que proporcionan experiencias de aprendizaje basadas en actividades de simulación y modelación en el estudio de situaciones de la variación y de la acumulación de cantidades que varían continuamente. En la investigación se toma como referencia la aproximación socioepistemológica. Bajo ese paradigma se concibe el cálculo como el cuerpo de conocimientos que permite el estudio de los fenómenos de variación y la modelación se concibe como una forma de construir conocimiento matemático que pertenece a las prácticas sociales. Se presentan aquí las primeras exploraciones en un contexto del estudio del movimiento. La forma de trabajar las representaciones asociadas al movimiento es con el uso de sensores y de transductores que transforman la información en conjuntos de datos que diversos programas manipulan mostrando representaciones gráficas en calculadoras.