448 resultados para Funções quaterniônicas
Resumo:
Nos proponemos estudiar las construcciones de polígonos regulares con regla y compás con la asistencia del GeoGebra, y presentar una secuencia de acciones que pueden resultar de base para enseñar estos conceptos. Para un mejor aprovechamiento de este trabajo, los lectores deberían tener nociones de geometría, particularmente estar familiarizados con los problemas de construcciones con regla y compás. También es recomendable tener conocimientos de estructuras algebraicas, especialmente de extensiones de cuerpos. Por estos motivos está dirigido a docentes de educación terciaria y a estudiantes que tengan los conocimientos mencionados anteriormente.
Resumo:
En este cursillo trabajaremos una propuesta de ingeniería didáctica para el estudio de las cónicas como lugares geométricos a partir de un trabajo experimental con espejos y su modelación con geometría dinámica.
Resumo:
El objetivo de esta charla es presentar algunos resultados recientes sobre teorías elementales en matemáticas para el desarrollo del talento en matemáticas. En particular, se mostrarán algunos resultados relacionados con la teoría de grafos y la teoría reticular, ambas, teorías matemáticas que han venido siendo adaptadas por el Grupo Yaglom de la Universidad Sergio Arboleda para los cursos de pretalentos y talentos en matemáticas.
Resumo:
Este artigo apresenta resultados parciais de uma investigação de doutorado referente à busca de temas adequados aos interesses dos alunos, que estejam em sintonia com a vida moderna e que possibilitem desenvolver conteúdos matemáticos para o Currículo de Matemática, no Ensino Médio. Apresenta-se a história desta etapa da Educação Básica, no Brasil, visando uma compreensão do todo que possibilite identificar temas já trabalhados ou desenvolvidos no Currículo de Matemática. O objetivo desta pesquisa é investigar quais seriam os possíveis temas a serem trabalhados, no Ensino Médio, que alie conteúdos matemáticos e temas de interesse. A metodologia de pesquisa apresenta uma abordagem qualitativa, pois permite que o pesquisador valide a pesquisa através da análise e descrição dos dados coletados pelo pesquisador. Um exemplo de tema a ser explorado, é a Criptografia, pois permite desenvolver conceitos matemáticos em atividades de codificação e decodificação, proporcionando o trabalho em grupo, a criação de estratégias de resolução de situações problemas e a recontextualização dos conteúdos envolvidos no tema abordado.
Resumo:
Finlandia últimamente ha recibido mucha fama por su éxito en la prueba de PISA. Varios libros, muchos artículos en revistas académicas y en la prensa popular han analizado dicho éxito. ¿Cuáles son algunas de las características demográficas de Finlandia y cómo se comparan con los países del Caribe? ¿Cuáles son algunos de los aspectos principales del éxito de Finlandia? ¿Cómo se comparan con los países del Caribe? ¿Qué debemos aprender de la experiencia de Finlandia?
Resumo:
Este trabalho tem como objetivo apresentar uma reflexão sobre o processo de aprendizagem do conceito de Função Exponencial no Ensino Médio, a partir da utilização do jogo Torre de Hanói virtual, através do uso de laptops educacionais. Os dados foram coletados por meio de um questionário inicial, para identificação das ideias prévias dos estudantes e por meio de registros em um diário de campo. Em seguida, os dados foram analisados conforme a metodologia Análise Textual Discursiva. A partir da análise, emergiram duas categorias: a primeira indica que a ideia inicial apresentada pelos alunos em relação à Função Exponencial está associada a uma caracterização da linguagem ligada à Função Quadrática. Já, a segunda categoria aponta uma transformação da linguagem natural do entendimento da função exponencial para a linguagem formal, isto é, a formalização escolarizada do conceito de Função Exponencial.
Resumo:
Com o presente trabalho buscou-se articular saberes de Matemática e Biologia presentes no Ensino Médio brasileiro. Na tessitura teórica, destacaram-se Morin (conhecimento como elaboração complexa), Machado (as redes de saberes) e Lévy (metáfora do hipertexto). Consideramos como eixos para a pesquisa: 1) Possibilitar ações didáticas envolvendo de forma complexa Biologia e Matemática; 2) Biologia e Matemática como objetos de atuação do professor e instrumentos para o estudante elaborar conhecimento. A análise dos resultados permitiu a identificação de duas categorias de integração entre Biologia e Matemática no Ensino Médio: 1) instrumentos matemáticos utilizados para descrever fenômenos biológicos; 2) a Matemática utilizada para a resolução de problemas da Biologia. O trabalho apresenta-se como estudo teórico que apontou temas dos ensinos de Biologia e Matemática no Ensino Médio favorecedores de articulações e ampliação do alcance didático dessas disciplinas no Nível Médio de ensino.
Resumo:
En años recientes, un cuerpo creciente de investigaciones en didáctica de las matemáticas han identificado algunas dificultades en relación con el aprendizaje de contenidos temáticos, procesos y contextos relacionados con el pensamiento espacial y sistemas geométricos, siendo comúnmente atribuidas a causas de orden epistemológico, cognitivo, curricular y didáctico. En este sentido se revela como prometedor el estudio del proceso de integración al currículo y a las prácticas escolares, de recursos, concretamente lo que se refiere a materiales manipulativos. Esto con la intención de fortalecer en los estudiantes los conocimientos adquiridos para resolver algunos problemas de su entorno escolar y cotidiano, a medida que avanza su proceso de aprendizaje.
Resumo:
Se considera que las nociones matemáticas tienen su origen en las ideas germinales que han surgido en diferentes momentos histórico-epistemológicos de la matemática. En la didáctica de la matemática las nociones tienen un papel preponderante como elementos articuladores de los saberes matemáticos que están en juego. En este trabajo se dan algunas evidencias del comportamiento epistemológico acerca de dos nociones: la promediación y la linealidad, las cuales no se perciben en la escuela en su estatus metamatemático. Aparecen en prácticamente todas las etapas escolares y su conceptualización en los diferentes niveles educativos es abordada de forma desarticulada, lo que propicia aprendizajes poco significativos.
Resumo:
El presente trabajo forma parte de la primera etapa del Proyecto de Investigación “Análisis del Lenguaje Matemático y su influencia en los procesos de Validación en estudiantes universitarios de Ingeniería” realizado en forma conjunta por la Facultad de Agronomía UNCPBA (Azul-Argentina), y la Facultad de Química e Ingeniería UCA (Rosario-Argentina). Aquí se presentan y analizan los resultados de una encuesta piloto en pos de caracterizar las dificultades y obstáculos para la comprensión y traducción entre los registros de expresiones verbales o escritas (lenguaje proposicional) y su representación en lenguaje algebraico (uso de símbolos matemáticos) en los estudiantes que ingresan a la Universidad.
Níveis de conhecimentos matemáticos esperados dos estudiantes para acesso na universidade brasileira
Resumo:
O objetivo desde trabalho é relatar uma análise buscando identificar os conhecimentos matemáticos institucionalmente esperados pelo sistema educacional brasileiro para os estudantes concluintes do Ensino Médio do ano de 2011 tomando como base a avaliação do Exame Nacional do Ensino Médio – ENEM 2011, que atualmente é utilizada para o acesso pela grande maioria das universidades pública e privada. Para construir nosso instrumento de análise consideramos elementos da Teoria Antropológica do Didático de Chevallard (2001), as abordagens teóricas em termos de quadros segundo definição de Douady (1992) e níveis de conhecimento esperados dos estudantes conforme definição de Robert (1997). Nessa análise, buscamos identificar uma visão geral das relações pessoais institucionalmente esperadas dos estudantes, no que se refere aos conteúdos matemáticos, que tenham sido estudados pelos mesmos durante os 12 anos que compõem a Educação Básica no Brasil.
Resumo:
A História da Educação Matemática vem se consolidando como um novo campo de investigação quer no Brasil ou no exterior. Neste estudo, sinaliza-se a importância de se tomar arquivos pessoais, escolares e institucionais como fontes de pesquisa histórica, em particular, para a pesquisa e produção de conhecimento sobre a Educação Matemática. Assim, este texto relata vivências acumuladas em dois grupos de pesquisa brasileiros que se dedicam a organizar, preservar e disseminar documentos relativos à Educação Matemática. Como resultado, pretende-se contribuir para a discussão da importância dos arquivos pessoais, escolares ou institucionais para a escrita da História da Educação Matemática.
Resumo:
A partir de este trabajo se busca establecer una relación entre el análisis epistemológico de la matemática y los procesos de enseñanza-aprendizaje de la geometría, centrados en un estudio de los problemas que históricamente han fundamentado la integral, desde la postura de resolución de problemas, las ventajas e implicaciones para el trabajo en el aula, el docente y el estudiante. Se hace una presentación del trabajo realizado geométrica y analíticamente para obtener las fórmulas del cálculo de área y volumen de algunas figuras, encaminado a un estudio sobre la importancia del tratamiento de situaciones problema para la enseñanza de la geometría, partiendo de los aportes que desde las situaciones históricamente abordadas se pueden realizar al conocimiento del profesor y los aspectos que puede tener en cuenta para orientar la enseñanza.
Resumo:
En esta charla se presentará el trabajo realizado durante el año 2010 por el grupo Nuevas Tecnologías de EDUMAT-UIS coordinado por el Dr. Martín Eduardo Acosta Gempeler. El grupo viene realizando un trabajo de capacitación a profesores de varios colegios del área metropolitana de Bucaramanga en cuanto a la implementación de software de geometría dinámica en la enseñanza de diferentes conceptos geométricos en secundaria.
Resumo:
Una secuencia didáctica se entiende como un sistema de reflexión y actuación del profesor en donde se explicitan aquellos aspectos del quehacer didáctico fundamentales a toda acción de enseñanza y aprendizaje, y en el que participan estudiantes, docentes, saberes y el entorno. En la secuencia didáctica a la que se refiere esta ponencia, propuesta para la enseñanza de la semejanza, los fractales serán el recurso a través del cual se identificarán las características y propiedades de la semejanza. En la planeación se tuvieron en cuenta la relación intrafigural y las transformaciones geométricas propuestas por Lemonidis, como referente teórico para analizar el concepto de semejanza.