26 resultados para proceso de cambio
Resumo:
La incorporación en la vida cotidiana de las nuevas tecnologías de la información y la comunicación ha significado un cambio radical en la forma de desarrollar el proceso de enseñanza y aprendizaje en las diferentes disciplinas y niveles escolares. En este sentido, el software de geometría dinámica “Cabri Géomètre II Plus” es un programa computacional de fácil manipulación, amigable y de rápido aprendizaje, que permite a los estudiantes visualizar, descubrir, conjeturar y/o comprobar propiedades que se deseen trabajar. El presente artículo tiene como finalidad mostrar actividades en el tema de transformaciones isométricas y que se pueden desarrollar con el uso de Cabri II Plus, y que permiten el desarrollo del pensamiento geométrico.
Resumo:
El problema de investigación se plantea en cómo utilizar el Cabri II Plus para lograr la transposición didáctica de la noción de límite a contextos computacionales, transposición informática (Balacheff, 1994). Construyendo límites de sucesiones y límites de funciones, visualizamos el concepto permitiendo la comprensión de la definición formal, la validación de propiedades y enunciados matemáticos y la activación de un proceso cognitivo marcado por la relación dialéctica entre percepción y conceptualización durante la interacción con la interfase del sistema (Moreno, 2002), promoviendo una transformación a nivel epistemológico de la experiencia matemática del estudiante. Las actividades propuestas articulan las representaciones algebraicas, gráficas y numéricas de la noción de límite, a través del movimiento, visualizando el cambio gracias a la geometría dinámica.
Resumo:
Se indaga en los desplazamientos entre herramientas de comunicación que ponen en juego profesores a la hora de comunicar qué y cómo cambia en una situación, en el marco de una línea de investigación en Pensamiento y Lenguaje Variacional (Proyecto Fondecyt Nº1030413 y Proyecto Diumce 06/07). Adscribimos a una mirada sistémica en la que entendemos a las matemáticas como una actividad humana en donde cobra vital importancia la persona haciendo matemáticas y no sólo el producto matemático. Por ello resulta relevante considerar -en la praxis educativa- las negociaciones y búsqueda de consenso entrelazadas éstas, con las acciones cognitivas de la persona al momento de enfrentarse a la solución de un problema. Asumimos una naturaleza de la noción de variación como red semántico operacional transversal, que imbrica distintos contenidos escolares de ciencia experimental y de matemática, particularmente aquellos de tiempo y velocidad. Entendemos al tiempo cotidiano formado por una red compleja de intencionalidades y coordinaciones que se estructuran a partir de las necesidades de coordinación con lo otro, con los otros y de las proyecciones intencionales hacia un futuro y un pasado, y, al tiempo matemático en su calidad de parámetro y figurado sobre la base de la metáfora de una distancia horizontal. A continuación se analizan, desde ese marco conceptual, las herramientas a que recurren profesores para comunicar cambios en una situación específica desarrollada en el marco las actividades del Proyecto de Investigación Las representaciones docentes del Cambio.
Resumo:
Se estudia el proceso que va desde las acciones reales y efectivas de añadir y quitar hasta la construcción de las operaciones aritméticas de suma y resta por parte de los escolares de 3, 4 y 5 años. El esquema lógico-matemático subyacente es el de transformaciones. Para que se den estas operaciones deben presentarse simultáneamente dicho esquema y la cuantificación, siendo esa simultaneidad la que lleva a las relaciones numéricas. Teniendo en cuenta que el origen de las operaciones de suma y resta en el escolar está supeditado a las acciones de añadir y quitar que se desarrollan en un proceso de construcción mental de los esquemas lógicos-matemáticos de transformaciones de cantidades discretas, se propone un plan de actuación en el aula de educación infantil mediante un tratamiento sistemático de dichas operaciones.
Resumo:
Este estudio tiene como objetivo examinar cómo los futuros profesores de secundaria (EPS) reconocen evidencias de la comprensión del proceso de generalización en estudiantes de secundaria. Los EPS realizaron dos tareas: (1) describir las respuestas dadas por estudiantes de secundaria a dos problemas de generalización lineal y agrupar las que reflejaban características comunes de la comprensión del proceso de generalización; (2) participar en un debate virtual sobre las características de la comprensión del proceso de generalización. Los resultados indican que la participación en el debate virtual permitió a los EPS centrar su mirada en las ideas que subyacen en el proceso de generalización (generalización cercana y lejana e intento de expresar la regla general, pasando de una estrategia aditiva a una funcional) más que en el procedimiento realizado.
Resumo:
Este documento centra su atención en la noción de variable como elemento básico de la construcción de conceptos relacionados a fenómenos de variación y cambio. Partimos de que la variable no es una idea construida como un objeto o proceso aislado, sino que surge necesariamente de la relación de al menos dos entidades cambiantes que en la mayoría de los casos una de ellas es la variable tiempo. Pretendemos realizar el estudio de la variable desde diferentes dimensiones: la epistemológica, la cognitiva, la didáctica y la sociocultural, para poder tener elementos que nos permitan determinar qué procesos favorecen la construcción de esta noción y asimismo realizar su caracterización.
Resumo:
El trabajo se inscribe en el marco del proyecto de articulación e integración de la formación docente, entre la Universidad Nacional de Tucumán y Ministerio de Educación y Cultura de la Provincia de Tucumán, denominado: “Mejoramiento del Proceso de Desarrollo del Eje de la Práctica Profesional en Educación Científica, en las Carreras de Profesorado de Educación Primaria y Profesorado de Matemática y su Impacto en las Escuelas Seleccionadas de los distintos niveles”. Fue destinado a docentes del nivel primario y medio que reciben residentes, residentes y profesores en matemática de los institutos superior de formación docente (ISFD).Se desarrollaron distintas acciones entre las que se encuentran: Jornadas de profundización disciplinar y didáctica, seminarios taller, talleres institucionales e interinstitucionales de intercambio entre la universidad y los ISFD e implementación de un foro de relatos de experiencias. Se evaluaron avances y obstáculos encontrados en la ejecución y de cómo el proyecto favoreció la articulación interinstitucional.
Resumo:
Este documento contiene los aspectos esenciales de una conferencia dictada por el autor en el marco de las actividades de la RELME 16 celebrada en la Habana, Cuba. El tema se refiere a las concepciones alternativas relativas al análisis de funciones en ambientes gráficos. En especial se analizan la importancia de esas concepciones en tanto procesos cognoscitivos que interfieren en los procesos de aprendizaje, las posibilidades de ser cambiadas por otras aceptables y su permanencia en la mente de los estudiantes a pesar de emplear diseños instruccionales para removerlas.
Resumo:
El presente trabajo se inscribe dentro de la línea de investigación denominada Pensamiento y Lenguaje Variacional, trazada por el Dr. Cantoral. Esta línea de investigación estudia la articulación entre la investigación y las prácticas sociales que dan vida a la matemática de la variación y el cambio. El contexto general en el que se ubica el presente trabajo es el programa de investigación desarrollado por el Dr. Crisólogo Dolores cuyo objetivo principal se centra en el estudio de los procesos de desarrollo del pensamiento y lenguaje variacional en condiciones escolares (Dolores, 1996). En particular nuestro interés se enfoca en el estudio de la estabilidad y cambio de las concepciones alternativas relativas al análisis del comportamiento de funciones a través de sus gráficas, pues existen evidencias de que esas interpretaciones primarias se arraigan en la mente de los estudiantes e interfieren en el desarrollo del pensamiento variacional. De hecho, asumimos que parte importante del desarrollo de esta forma de pensamiento consiste en el dominio de los procesos de franqueo o superación de esas concepciones alternativas.
Resumo:
El rol del aprendizaje significativo mediante la utilización de nuevas estrategias de enseñanza. Este aprendizaje involucra un proceso en el que lo que aprendemos es el producto de la información nueva, interpretada a la luz de lo que ya sabemos. Para que haya aprendizaje significativo, es necesario que el alumno pueda relacionar el material de aprendizaje con la estructura de conocimientos de que ya dispone. De esta forma, junto con la motivación favorable para la comprensión, y, los esfuerzos que requiere, una condición esencial del aprendizaje de conceptos será que estos se relacionen con los conocimientos previos de los alumnos. El nuevo conocimiento, que queremos que el alumno aprenda en esta oportunidad, surgirá de un adecuado desarrollo del razonamiento deductivo y manejo de los conocimientos previos. Entendiendo por razonamiento deductivo al proceso de razonamiento en que, para obtener una conclusión lógicamente necesaria a partir de ciertas premisas, los pasos están encadenados siguiendo ciertas reglas lógicas y son justificados rigurosamente. Las justificaciones están basadas en los axiomas y definiciones de la teoría respectiva, en teoremas demostrados con anterioridad y en las premisas o hipótesis del problema o teorema. El docente debe ayudar al estudiante a desarrollar y usar el poder del razonamiento deductivo comprometiéndolo permanentemente a pensar, analizar y deducir conjeturas en clase, además debe crear y seleccionar tareas apropiadas que puedan involucrar la generalización, la organización de datos para validar o refutar una conjetura. Un grupo de bachillerato del último año desarrolló la demostración de un teorema de convergencia de series, con los resultados de un 46% que la realizó exitosamente, versus un 36% que no lo logró. Los alumnos que lograron hacer la demostración, no eran los más estudiosos pero tenían una buena capacidad de razonamiento. En cambio los que generalmente preparan las evaluaciones y que se apoyan mucho en la memoria, no lograron un buen desempeño.
Resumo:
En este articulo presentamos el problema de reflexión de un grupo de trabajo en el que profesores de secundaria e investigadores en educación matemática hemos desarrollado y experimentado una secuencia de actividades ricas en el ámbito de las geometrías de rotaciones. Junto con el concepto de desarrollo de actividad rica presentamos la revisión de algunas contribuciones procedentes de la investigación y analizamos los resultados fruto de su experimentación.