47 resultados para Propiedades sensoriales
Resumo:
El artículo analiza las estrategias desarrolladas por estudiantes de nivel medio superior al resolver problemas matemáticos de la prueba PISA. El estudio toma como base las explicaciones escritas, verbales y gestuales presentadas por los estudiantes en el proceso de resolución de los problemas. Fueron caracterizadas dos tipos de estrategias: formales e informales. Las primeras, a partir de conceptos sobre objetos, relaciones y operaciones, así como de proposiciones y propiedades matemáticas y las segundas, por medio de transformaciones como la descomposición y recomposición de formas geométricas, asimismo, del uso de la estimación visual y estimación de medidas.
Resumo:
Este trabajo tuvo por objetivo determinar lo que han comprendido sobre ecuaciones algebraicas los alumnos, al finalizar la escuela secundaria e ingresar en la universidad. Para ello, analizamos las producciones escritas de 55 alumnos aspirantes a ingresar a una carrera de nivel universitario, posicionándonos en el Enfoque Ontosemiótico del conocimiento y la instrucción matemática, como marco teórico y metodológico de la Didáctica de la Matemática. Analizar la comprensión que tienen los alumnos sobre las ecuaciones, nos llevó a determinar si reconocen el campo de problemas en que se involucra este objeto matemático, aplican y recuerdan (implícitamente en la mayoría de los casos) los conceptos, propiedades y procedimientos que se requieren para llevar a cabo exitosamente las tareas, y utilizan lenguaje y argumentos apropiados en sus explicaciones. Como resultado final, obtuvimos una aproximación a la configuración cognitiva de cada estudiante, lo que permitió valorar la comprensión que tienen sobre el objeto matemático en cuestión.
Resumo:
La idea de este trabajo es presentar los instrumentos que se utilizaban principalmente en la Ingeniería y las Carreras de Ciencias, para realizar los cálculos, antes de la época de la Informática e inclusive antes de la calculadora científica. Con la Regla de Cálculo a los estudiantes se les enseñaban a realizar los cálculos desde el Bachillerato, en su formación Profesional, utilizando la regla de Cálculo, y ya siendo Profesionistas con el mencionado instrumento se diseñaron: puentes, edificios, embarcaciones, aviones, vehículos y tantos otros productos de la ciencia y la tecnología, así como los primeros vehículos espaciales. Para la construcción de la Regla de Cálculo se utilizaron los logaritmos y las escalas logarítmicas, para manejar éste instrumento se aplican las propiedades de los logaritmos.
Resumo:
La incorporación en la vida cotidiana de las nuevas tecnologías de la información y la comunicación ha significado un cambio radical en la forma de desarrollar el proceso de enseñanza y aprendizaje en las diferentes disciplinas y niveles escolares. En este sentido, el software de geometría dinámica “Cabri Géomètre II Plus” es un programa computacional de fácil manipulación, amigable y de rápido aprendizaje, que permite a los estudiantes visualizar, descubrir, conjeturar y/o comprobar propiedades que se deseen trabajar. El presente artículo tiene como finalidad mostrar actividades en el tema de transformaciones isométricas y que se pueden desarrollar con el uso de Cabri II Plus, y que permiten el desarrollo del pensamiento geométrico.
Resumo:
Consideramos en este trabajo la necesidad de observar el proceso a través del cual los estudiantes enajenan las propiedades conceptuales de la representación gráfica y sus componentes figurales. Propusimos a 149 estudiantes de bachillerato, un cuestionario en el que se solicita localizar puntos con base en propiedades relacionadas en sus ordenadas y sus abscisas; habiendo constatado que los estudiantes localizan puntos sobre el plano bajo las normas analíticas, les proponemos identificar los puntos de una gráfica que tienen mayor ordenada o abscisa que los demás. En particular, deseamos saber, cuáles consideran nuestros estudiantes que son los “puntos” sobre la gráfica, las marcas colocadas al inicio y al final de la gráfica en forma de pequeños círculos, o el rasgo determinado por su posición definida.
Resumo:
En este trabajo se presenta una aplicación del Análisis de Redes Sociales (ARS) al estudio de las relaciones entre alumnos de segundo año de una Escuela Técnica. El ARS se apoya en la teoría de grafos cuyo bagaje matemático permite analizar y medir, en términos generales, propiedades de las estructuras sociales en particular la escuela. La vida escolar es una trama compleja de factores que influirían en el rendimiento académico de los alumnos, tales como: tiempo de estudio que comparten, desde cuándo se conocen entre los compañeros, la proximidad de sus domicilios, sexo, edad, entre otros. Los factores sexo y edad no son relevantes dado que el grupo bajo estudio está formado por varones alrededor de los 16 años. En este trabajo se mostrarán los resultados obtenidos por el primer factor mencionado que fueron procesados a través de los software Ucinet 6 y Netdraw.
Resumo:
En el presente trabajo se comparte una experiencia de aula que se realiza, utilizando el Origami, para introducir el trabajo con funciones cuadráticas, con estudiantes de la media académica. En el proceso de iniciación al cálculo, se estudió la relación entre el plegado de papel y la geometría, al desarmar un módulo cuadrado y analizar las cicatrices que quedan en él. Se relacionaron algunos elementos matemáticos presentes en el módulo, con los conceptos matemáticos que emergieron en las cicatrices y se analizaron algunas propiedades de los poliedros. Esto permitió el estudio de conceptos como rectas paralelas y perpendiculares, bisectrices y mediatrices y familias de poliedros, relacionando el área lateral de los poliedros con el tamaño del módulo y con el número de éstos, lo que llevó al estudio de familias de funciones, haciendo el tránsito por diferentes sistemas semióticos de representación y al interior de algunos de estos, llevando a los mismos estudiantes a que le asignaran significado y sentido a los conceptos estudiados, al poderlos manipular.
Resumo:
La propuesta se sostiene en un Proyecto de Investigación que busca el desarrollo de estrategias innovadoras en la enseñanza de la matemática. Se apoya en una concepción de aprendizaje constructivo y significativo. Pretende brindar al profesor un material estructurado en forma clara, precisa y amena, elaborado con todos los elementos que consideramos necesarios para ser un instrumento eficaz para la enseñanza de Triángulo. Fue diseñado, no como algo prescriptivo sino, como una reflexión sobre la "buena receta", es decir, para que oriente el análisis y los criterios de acción, discuta y exprese los supuestos y permita al docente decidir entre alternativas y comprobar resultados. A través de esta secuencia el alumno investiga si es posible construir triángulos que cumplan determinadas condiciones, puede explorar de forma interactiva y conjeturar las propiedades de los ángulos interiores y exteriores, la propiedad correspondiente a los lados y las rectas y puntos notables de un triángulo.
Resumo:
El problema de investigación se plantea en cómo utilizar el Cabri II Plus para lograr la transposición didáctica de la noción de límite a contextos computacionales, transposición informática (Balacheff, 1994). Construyendo límites de sucesiones y límites de funciones, visualizamos el concepto permitiendo la comprensión de la definición formal, la validación de propiedades y enunciados matemáticos y la activación de un proceso cognitivo marcado por la relación dialéctica entre percepción y conceptualización durante la interacción con la interfase del sistema (Moreno, 2002), promoviendo una transformación a nivel epistemológico de la experiencia matemática del estudiante. Las actividades propuestas articulan las representaciones algebraicas, gráficas y numéricas de la noción de límite, a través del movimiento, visualizando el cambio gracias a la geometría dinámica.
Resumo:
La presente investigación surge en el programa “perfeccionamiento en matemática para profesores de enseñanza media” realizado en el IUFM le Mirail, Universidad de Toulouse, Francia. El estudio consiste en el diseño de una propuesta didáctica para el aprendizaje de la ecuación vectorial de una recta en el espacio, en estudiantes de 16 a 18 años, el interés nace por la incorporación de estos temas en el curriculum nacional. Para el diseño de la propuesta se utiliza elementos de la Teoría Antropológica de lo Didáctico (TAD), donde se entenderá como organización matemática, a un conjunto de tipos de tareas, de técnicas o procedimientos para resolver estas tareas y de definiciones, propiedades y teoremas que permitan describir y justificar la resolución de la tarea. Entre los elementos que aportan en el surgimiento de la organización matemática, se distinguen, tipos de tareas como, establecer si puntos del plano o el espacio son colineales y determinar las condiciones para que un tercer punto sea colineal a dos puntos dados, en el plano o en el espacio.
Resumo:
¿Por qué prismas y poliedros regulares tienen un rol protagónico en la matemática escolar? Los poliedros arquimedianos, ¿pueden ser relevantes para su inclusión en la matemática escolar de Educación Secundaria y Formación de profesores? En este taller proponemos reconocer y visualizar poliedros semirregulares con el uso del programa Poly Pro, descubrir y describir algunas de sus propiedades, identificar cuáles de ellos son arquimedianos, analizar las relaciones entre esta familia de poliedros y los poliedros regulares, explorar maneras de construirlos -a partir del análisis de grabados del artista renacentista W. Jamnitzer-, conjeturar acerca de la cantidad de elementos de esa familia y ensayar diferentes justificaciones. Es decir, proponemos una actividad que favorezca el tránsito entre los niveles 0, 1 y 2 propuestos por Van Hiele en el contexto de la geometría euclidiana del espacio, articulada a su vez con la forma de concebir la actividad geométrica de Kuzniak, a través de paradigmas caracterizados por el interés por resolver problemas específicos.
Resumo:
Se presenta un modelo geométrico para la construcción de un segmento llamado Escintor, que divide a un triángulo en dos poligonales de igual perímetro, además se demuestra la existencia de otras rectas notables en un triángulo denominadas Mescintriz y Vescintriz con propiedades similares a las otras rectas ya conocidas; así mismo se muestra como el Mescincentro y el Vescincentro, puntos donde se intersecan las Mescintrices y las Vescintrices respectivamente, están alineados con el Baricentro y el Incentro en una recta que guarda mucha semejanza con la Recta de Euler.
Resumo:
Los 5 poliedros regulares han sido modelo de la ciencia para los griegos y modelo de la astronomía para Kepler. Sin embargo, a pesar de su gran valor epistemológico su estudio es normalmente muy superficial en los cursos de Secundaria. Hace 20 años me formulé esta sencilla pregunta: ¿Cómo podemos calcular el volumen del icosaedro y del dodecaedro regular, conociendo solamente la medida de la arista? Esta pregunta dio lugar a una fascinante investigación, que comenzó en la búsqueda de diferentes medios para construir poliedros (se puede ver en la foto de la derecha un modelo a usar durante el taller) , un trabajo muy interesante con el álgebra de los irracionales cuadráticos, el uso de la trigonometría y el descubrimiento de varias y sorpresivas propiedades geométricas relacionadas algunas con el número áureo. Durante el curso los participantes aprenderán a construir, con regla y compás el pentágono regular(comenzando con su lado) , de la forma más simple y exacta, con su justificación paso a paso. Esto es imprescindible ya que en ambos el icosa y el dode hay numerosos pentágonos regulares. Este curso o taller es tan sólo un pequeño paseo en el increíble mundo de los 5 poliedros regulares, un mundo lleno de tesoros matemáticos, un mundo que espera a ser explorado y descubierto.
Resumo:
Los conocimientos geométricos aparecen en las distintas culturas desde el principio, quizá unidos con los conceptos de belleza y armonía. En este trabajo se presenta un ejemplo de cómo este abordaje se puede llevar a cabo en la escuela en el nivel medio ligado con su aparición. Es posible encontrar múltiples ejemplos de distintos tipos de aplicaciones en los que los objetos geométricos y sus propiedades se hacen necesarios para estudiar las formas. Las catedrales góticas suministran un bello ejemplo en el que la geometría aparece no sólo en las formas de las construcciones arquitectónicas, sino en particular en las composiciones artísticas de las ventanas. Se propone realizar un análisis de cuáles fueron los conceptos geométricos que manejaron los constructores para lograr estas obras de arte.
Resumo:
Se muestra la construcción de algunas cónicas por medio del software de geometría dinámica llamado RyC. Una de las principales ventajas de esta herramienta es que permite animar las construcciones geométricas conservando sus propiedades básicas, es decir, que le agrega movimiento a la clásica geometría euclidiana.