34 resultados para GUSTAVO OREJUELA MICOLTA
Resumo:
En este trabajo se muestran los primeros pasos del proyecto de investigación que tiene como meta el diseño de una propuesta para la enseñanza – aprendizaje del Cálculo Diferencial e Integral (de una variable). Se espera que su implementación, entre otros aspectos, mejore la comprensión de los conceptos fundamentales del Cálculo a través del tratamiento y conversión de las distintas representaciones de los conceptos, promueva el uso de la visualización matemática como estrategia para la formación adecuada de los conceptos, sirva de soporte a los estilos de matematización de las materias de las carreras de ingeniería. La propuesta focaliza su acento en la visualización, considerando que la visualización matemática favorece un enfoque global, integrador, de las representaciones de varios sistemas, facilitando la formación adecuada de los conceptos y la resolución de problemas no rutinarios.
Resumo:
¿En qué pensamos cuando citamos a Gulliver? Seguro que en proporciones. El trabajo nos va a mostrar la riqueza que posee este libro en la relación de la matemática con otras disciplinas como es la literatura, o como la música entre otros temas. Todo el material para incorporar en las aulas es de tal magnitud que nos preguntaremos ¿por qué no lo usamos y lo aprovechamos con nuestros alumnos? Se propone tomar distintos párrafos del libro y trabajar las situaciones que se plantean con longitudes, perímetros, superficies, volúmenes, medidas no convencionales, sistemas de coordenadas, razones, figuras y cuerpos geométricos, relaciones trigonométricas para llevar al espacio áulico con nuestros alumnos dichas actividades, donde veremos la riqueza de esta obra literaria con nuestra asignatura y otras.
Resumo:
La presente Comunicación Breve se enmarca dentro de la producción de un grupo de trabajo de docentes uruguayos de diferentes niveles educativos reunidos por un interés común: el de cuestionarse acerca de las prácticas educativas actuales, qué tipo de aprendizaje están provocando y cómo modificarlas para mejorar dichos aprendizajes. En este caso el tema escogido fue el de la incorporación del tema “Integrales” al currículo de Secundaria. Se diseñó una propuesta de enseñanza-aprendizaje para el mismo, teniendo como principio rector el que fuera una primera aproximación de los estudiantes al tema, y por lo tanto sin sentir la necesidad de que se ajustara a lo que generalmente se presenta en los libros de texto actuales.
Resumo:
Ésta investigación se sitúa en la problemática del fracaso escolar en Matemática en estudiantes de Nivel Medio (Corica, Otero, 2005; Gascón et. al., 2001). Nuestro objetivo fue estudiar las ideas de alumnos y profesores acerca del saber matemático, su enseñanza y aprendizaje, para poder explorar los posibles factores que intervienen en el fracaso en Matemática de los estudiantes. En esta investigación se abordan aspectos didácticos a partir de la Teoría Antropológica de lo Didáctico (Chevallard, 1999), aspectos cognitivos a partir de la Teoría de Aprendizaje Significativo (Ausubel, 1976) y aspectos epistemológicos vinculadas al saber matemático a partir de las ideas de Klimovsky (2000). En este trabajo se presentan resultados de dos estudios realizados con estudiantes de Nivel Medio y un tercer estudio vinculado con profesores del mismo nivel.
Resumo:
Este escrito resume las actividades desarrolladas durante el curso “La conservación en el estudio del área”, en el que mostramos la existencia de una particular relación entre el área y su medición; de la medición con la comparación, y de todas estas con la conservación. Las actividades comprendieron construcciones vinculadas con regiones planas (presentadas como regiones geométricas o analíticas), involucrando a la conservación –como principio, noción, concepto, actividad y/o práctica– en el estudio del área, y de su relación con la integral definida. Actividades que ubicamos en la aproximación socioepistemológica a la investigación en Matemática Educativa.
Resumo:
Este trabajo aporta elementos que robustecen la socioepistemología propuesta sobre lo periódico en la que la predicción es la práctica asociada a la construcción del conocimiento matemático. Además de trabajar en un contexto de funciones periódicas distancia-tiempo, se abordan otros contextos como las sucesiones periódicas de números y de figuras.
Resumo:
La raíz cuadrada desempeña un papel fundamental en todos los niveles escolares, desde los básicos hasta los universitarios. La presente investigación se centra en estudiar este concepto desde el punto de vista de la aritmética, posteriormente del álgebra y por ultimo del cálculo, mediante el análisis de libros de texto y la aplicación de un cuestionario desde el nivel básico hasta el superior. Finalmente mostraremos concepciones específicas relativas a la raíz cuadrada que permanecen en los estudiantes.
Resumo:
Se trata de una propuesta de clase en la cual se plantea a los alumnos la resolución de una situación real en base a una serie de datos estadísticos previamente recogidos. El tema sobre el cual se plantea la decisión a tomar implica de parte de los alumnos confrontar previamente las diferentes opiniones que existen en el medio social sobre esa decisión a tomar. La situación a plantear no puede ser ajena al entorno social en el cual están insertos los alumnos. La metodología de trabajo será la siguiente: se forman grupos dentro de la clase que tienen que asumir un rol en defensa de una de las distintas posturas en torno al tema en cuestión. Además de los datos estadísticos, los docentes aportan material suficiente como para que cada equipo elabore, discuta y asuma la posición que luego habrá de defender en la discusión general del tema. El objetivo que se persigue es que los alumnos logren ubicarse en el papel de quien tiene que tomar decisiones manejando datos estadísticos, buscando que dicha aplicación no aparezca descolgada de la realidad, como un mero ejercicio matemático, sino como parte fundamental de una decisión que puede alterar la vida de mucha gente.
Resumo:
Trabajando en un ambiente de Geometría Dinámica y a partir de actividades que involucran al arbelos de Arquímedes se busca explicitar la formulación de conjeturas y elaborar demostraciones que den cuenta de las conjeturas formuladas, poniendo de relieve la diversidad de resultados obtenidos así como la riqueza de los caminos tomados.
Resumo:
Se reporta aquí un minicurso en el que participaron profesores de matemática de Enseñanza Media. Trabajando en un ambiente de Geometría Dinámica se aborda la resolución de problemas que involucran distintas áreas de la matemática: geometría métrica, cálculo diferencial, geometría analítica, álgebra, y que permiten poner de manifiesto la pertinencia y relevancia –así como señalar sus peculiaridades- del ambiente dinámico en la construcción del conocimiento matemático por parte de los participantes y a su vez discutir su papel en el trabajo con estudiantes.
Resumo:
En este curso corto utilizamos distintas aplicaciones de geometría dinámica para realizar construcciones geométricas en el modelo de Poincaré para geometría hiperbólica con el propósito de investigar y determinar la naturaleza de algunos teoremas de geometría para la enseñanza secundaria y superior. De esta forma clasificamos algunos de los teoremas de geometría plana como neutrales, estrictamente euclidianas o estrictamente hiperbólicos.
Resumo:
La enseñanza de la geometría es materia de muchos estudios y aproximaciones. En trabajos considerados para este taller (Bermúdez,1996; Flores y Barrera,2002; Nolé, 2001; Siñeriz,2002; Gutiérrez y Jaime,1994), se percibe el interés de docentes e investigadores latinoamericanos en generar propuestas que permitan mejorar su enseñanza. En general, éstas parten del modelo Van Hiele, y se reportan propuestas a alumnos (Bermúdez, 1996) y profesores (Flores y Barrera, 2002) en los cuales se exploran dificultades de unos y otros para acceder a los distintos niveles de aprendizaje. Así, se propuso este taller donde el participante pudo experimentar el proceso de conjetura y demostración, para trabajar en el nivel 4 del modelo, del que se registran pocas propuestas.
Resumo:
Este documento centra su atención en la noción de variable como elemento básico de la construcción de conceptos relacionados a fenómenos de variación y cambio. Partimos de que la variable no es una idea construida como un objeto o proceso aislado, sino que surge necesariamente de la relación de al menos dos entidades cambiantes que en la mayoría de los casos una de ellas es la variable tiempo. Pretendemos realizar el estudio de la variable desde diferentes dimensiones: la epistemológica, la cognitiva, la didáctica y la sociocultural, para poder tener elementos que nos permitan determinar qué procesos favorecen la construcción de esta noción y asimismo realizar su caracterización.
Resumo:
La sociedad plantea una variedad de demandas de educación dependiendo de su situación y circunstancias particulares. La educación a distancia representa una realidad mundial en constante crecimiento cuantitativo y cualitativo potenciada últimamente con nuevos medios de comunicación.
Resumo:
En este artículo presentamos los resultados cuantitativos sobre estados y cambios en el aprendizaje de la validación matemática (para los contenidos función de proporcionalidad directa y función cuadrática) en relación con diversas modalidades de enseñanza. En ellas se promovieron diferentes interacciones en el aula: interacciones entre experto y aprendiz (E-A) e interacciones en un grupo de aprendices (G-A). Los datos recabados y procesados, referidos al estado y al cambio producido en el aprendizaje de la validación, son individuales. Esto se ha llevado a cabo en la asignatura Matemática de nivel pre-universitario del Curso de Aprestamiento Universitario (CAU) en la Universidad Nacional de General Sarmiento (UNGS), de la provincia de Buenos Aires.