33 resultados para Funciones de distribución
Resumo:
Este trabajo forma parte de una investigación que pretende analizar la concepción que tienen los docentes de la noción de demostración dentro de la matemática y la influencia en sus prácticas. En él se plantea la necesidad de diferenciar diversas funciones para la demostración en matemática analizando su presencia en las concepciones de docentes y estudiantes del profesorado de matemática. El papel y la función de la demostración en el aula, o ha sido totalmente ignorada o bien se presta como medio de certeza, y en menor medida de explicación. Estas funciones más priorizadas se pueden vislumbrar a través de las respuestas obtenidas.
Resumo:
En este curso se pretende realizar análisis de funciones a partir de sus representaciones gráficas. Se parte del desarrollo de actividades de lectura, interpretación y construcción de gráficas de funciones sobre la base de un ambiente rico en significados visuales. Se desarrollarán actividades que requerirán procesos de conversión y tratamiento de diferentes sistemas semióticos de representación como el gráfico, verbal y analítico, pero predominantemente el gráfico. La validez de las argumentaciones que permitirán dar respuesta a los cuestionamientos incluidos en estas actividades, será de naturaleza eminentemente visual.
Resumo:
Este documento contiene los aspectos esenciales de una conferencia dictada por el autor en el marco de las actividades de la RELME 16 celebrada en la Habana, Cuba. El tema se refiere a las concepciones alternativas relativas al análisis de funciones en ambientes gráficos. En especial se analizan la importancia de esas concepciones en tanto procesos cognoscitivos que interfieren en los procesos de aprendizaje, las posibilidades de ser cambiadas por otras aceptables y su permanencia en la mente de los estudiantes a pesar de emplear diseños instruccionales para removerlas.
Resumo:
En este artículo se reportan los resultados de una investigación que explora las concepciones alternativas de profesores y estudiantes de bachillerato acerca del comportamiento variacional de funciones. Para tal exploración se diseñó un cuestionario en el que se usan los sistemas de representación verbal, gráfico y analítico. En especial se exploraron concepciones relativas al comportamiento variacional de funciones [v. gr: Para qué x, f´(x)>0], comportamiento variacional y signo simultáneamente [v. gr: Para qué x se cumple que: f´(x)>0 y f(x)<0] y las relativas a los procesos de reversibilidad: [v. gr: Dada f´(x) esbozar f(x) y viceversa]. Los resultados indican que una cantidad significativa de encuestados, creen que f(x)<0 si su gráfica está en el semieje negativo de las x; consideran a f´(x) como asociada a un punto y no al comportamiento de f(x); la mayoría se muestra imposibilitado para transferir información variacional de la gráfica de f´(x) a f(x).
Resumo:
El presente trabajo se inscribe dentro de la línea de investigación denominada Pensamiento y Lenguaje Variacional, trazada por el Dr. Cantoral. Esta línea de investigación estudia la articulación entre la investigación y las prácticas sociales que dan vida a la matemática de la variación y el cambio. El contexto general en el que se ubica el presente trabajo es el programa de investigación desarrollado por el Dr. Crisólogo Dolores cuyo objetivo principal se centra en el estudio de los procesos de desarrollo del pensamiento y lenguaje variacional en condiciones escolares (Dolores, 1996). En particular nuestro interés se enfoca en el estudio de la estabilidad y cambio de las concepciones alternativas relativas al análisis del comportamiento de funciones a través de sus gráficas, pues existen evidencias de que esas interpretaciones primarias se arraigan en la mente de los estudiantes e interfieren en el desarrollo del pensamiento variacional. De hecho, asumimos que parte importante del desarrollo de esta forma de pensamiento consiste en el dominio de los procesos de franqueo o superación de esas concepciones alternativas.
Resumo:
Esta es una propuesta didáctica que consta de una serie de actividades relacionadas con la representación gráfica de ciertas funciones y su vinculación con una representación en un contexto físico o icónico (dibujo de un recipiente). Las actividades son de dos tipos: Dadas las formas de los recipientes, bosquejar las gráficas correspondientes, teniendo en cuenta que la variable independiente es la altura del líquido y la variable dependiente es el área de la superficie del líquido (o bien el volumen del líquido dentro del recipiente); dadas las gráficas del área de la superficie del líquido versus altura, bosquejar los posibles recipientes correspondientes. Ambas actividades son diseñadas para propiciar el cambio de un sistema de representación a otro (Janvier, 1987; Duval, 1992, 1999; Hitt, 1992).
Resumo:
El curso funciones matemáticas en la enseñanza secundaria es la primera experiencia de capacitación masiva de docentes a nivel nacional en la modalidad a distancia, usando las tecnologías de la información y comunicación (TICs), con cobertura nacional e impulsada por el Ministerio de Educación de Chile. La formación se centra en una área específica del currículo como lo es la matemática en el nivel secundario y en un contenido curricular concreto las funciones. El conocimiento de la reforma curricular, la generación de material didáctico, la incorporación de las TICs en las prácticas pedagógicas y la evaluación de los aprendizajes, han sido los contenidos sobre los cuales se ha diseñado y estructurado el curso. La metodología de trabajo situó al docente en el centro del aprendizaje, como una aprendiz que define en forma autónoma su camino de aprendizaje de acuerdo a sus intereses y motivaciones. Los resultados muestran una deserción inicial importante, pero luego un alto compromiso y permanencia en el curso, valoración de los contenidos, los recursos propuestos, las estrategias de enseñanza y, la metodología de trabajo implementada.
Resumo:
A partir de un estudio en proceso con profesores del nivel medio sobre errores en el uso de expresiones numéricas que contienen exponentes y radicales se propone una forma de enseñanza basada en recursos de visualización usados en la graficación de funciones. Además de reconocer la visualización como la habilidad de los sujetos para formar y manipular imágenes mentales se acepta como la habilidad para trazar diagramas apropiados para representar un concepto matemático o un problema. Son reconocidos el valor y la importancia de las imágenes visuales, en los diagramas y de otras herramientas visuales en los procesos heurísticos, para el descubrimiento, en la enseñanza de la matemática. Se propone una forma integral de abordar el aprendizaje de exponentes y radicales que consideran recursos visuales, numéricos y algebraicos para obtener sus propiedades. La graficación de funciones que comprenden formas de expresiones con exponentes y radicales, realizada por puntos, por intervalos y en forma global, favorece el análisis de la forma en que cambian las variables e ilustra el dominio de definición de las expresiones algebraicas. Del análisis de las representaciones gráficas se obtienen las propiedades de expresiones numéricas que incluyen exponentes y radicales definidas tanto en los números reales como en los complejos. Utilizando el álgebra de estas curvas se obtienen otras propiedades numéricas. Se hace uso de la calculadora graficadora y la computadora para obtener las gráficas de las funciones y para verificar las propiedades numéricas que se establecen.
Resumo:
El currículo de estadística en el sistema escolar sugiere desde la infancia un cambio metodológico de enseñanza hacia el desarrollo de los aspectos intuitivos de lo estocástico en situaciones de incertidumbre. El Taller tiene dos propósitos, presentar actividades de experimentos aleatorios con dispositivos manipulativos, algebraico y computacional para familiarizarse con la noción de distribución de probabilidad binomial. También, ilustrar que su enseñanza en la educación secundaria por medio de variadas representaciones proporciona una mayor potencia en el cálculo de probabilidades y la introducción de las ideas de parámetro, estadístico, simulación, variable aleatoria y aproximación.
Resumo:
En las matemáticas del bachillerato, la representación gráfica de funciones racionales suele abordarse como un caso más de la representación general de funciones, aunque con una atención especial en el cálculo de las asíntotas. Para el cálculo de primitivas de funciones racionales se usa la descomposición de las mismas en fracciones simples. Se trata aquí de aplicar esta descomposición en la representación gráfica haciendo mención de las ventajas sobre el método que generalmente se suele usar.
Una propuesta para la aproximación intuitiva de funciones por polinomios en la ESO y el bachillerato
Resumo:
Se extiende el concepto de aproximación de un número real al de aproximación de una función. En la primera fase, a partir de la suma de una progresión geométrica, se obtienen casos particulares de funciones polinómicas que aproximan un tipo concreto de funciones racionales. En la segunda fase se encuentran funciones polinómicas que aproximan cualquier función continua. El profesor utiliza la historia de las Matemáticas como recurso didáctico haciendo comentarios que recuerdan la evolución histórica de la aproximación de funciones en series de potencias. Este recorrido es el mismo que van a seguir los alumnos.
Resumo:
En este artículo se presenta una propuesta para introducir el concepto de función convexa de un modo diferente al habitual, complementario a éste, que se apoya en la relación entre convexidad de funciones y conjuntos convexos, y que no requiere que la función sea derivable. Además, permite obtener, de forma sencilla y unificada, las desigualdades numéricas clásicas a partir de la convexidad de ciertas funciones
Resumo:
Se presenta un módulo para Derive que permite ir más allá del simple dibujo de la gráfica de una función. Tan sólo basta cargarlo y definir en él la función F(x) sobre la que se quiere aplicar, para que las funciones que lo integran proporcionen sus elementos característicos: asíntotas, máximos y mínimos, inflexiones,...
Resumo:
La idea del artículo es presentar las pruebas del teorema de Liouville sobre funciones enteras. En este trabajo recalcamos dos importantes aplicaciones, una en la demostración del teorema fundamental del álgebra y otra en el área de las aplicaciones conformes. El presente contiene una breve nota histórica de la vida de Joseph Liouville y su trabajo. También contiene la version del teorema de Liouville para funciones doblemente periódicas, funciones armónicas y aplicaciones cuasiconformes.
Resumo:
La orientación que tradicionalmente se da a este tema es sumamente abstracta y en la mayoría de los casos carece completamente de sentido para nuestros alumnos. Ciertamente muchos de ellos acabarán haciendo una gráfica más o menos aproximada a partir de la fórmula algebraica que nosotros les demos (en ocasiones camuflada con algún pequeño enunciado), pero esto carecerá de significado alguno para la mayoría.